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AFIT/GE/ENG/06-24 
 

Abstract 
 
 

 In September 2005, radar cross section (RCS) measurements were made of 

resistive sheets, or R-cards, wrapped around a polystyrene foam cylinder to compare with 

a newly developed theoretical RCS prediction technique.  The resistivities of the R-cards 

were initially measured with a direct current (DC) four-point probe.  When the RCS 

measurements were compared to the theoretical predictions, it became clear that DC 

resistivity alone is not sufficient to accurately predict the scattering from an R-card.  This 

thesis presents alternating current (AC) methods for determining the resistivity of an R-

card.  Both free-space and waveguide techniques are presented. 

 Experimental verification of the techniques is performed using two R-cards with 

DC resistivities 892 Ω/sq and 64 Ω/sq.  The techniques are compared intra- and inter-

measurement apparatus.  An error analysis is also performed to demonstrate the 

sensitivity of the techniques to errors in the measurements of the thickness or the 

permittivity of the support backing. 
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DETERMINING THE RESISTIVITY OF RESISTIVE SHEETS 
 

USING TRANSMISSION MEASUREMENTS 

 

1. Introduction 
 
 
 A perfect electrical conductor (PEC) is a type of surface with which every student 

of electromagnetics is familiar.  From the very first electromagnetics course, students are 

taught that at a PEC surface the total tangential electric field is forced to zero and that the 

total tangential magnetic field is related to the electric current density induced on that 

surface.  Such a surface, being a PEC, offers no hindrance to the flow of electric current; 

therefore, it possesses infinite conductance and zero resistance.  Although PECs do not 

exist naturally, iron, aluminum, copper, gold, and most other common metals can be 

safely approximated as PECs at microwave frequencies. 

 A dielectric is another material with which students of electromagnetics are 

familiar.  An ideal dielectric is an electrical insulator; it does not permit electric current to 

flow through it or across its surface.  This material, completely opposite of a PEC, has no 

conductance and infinite resistance.  The tangential components of a field incident on a 

dielectric are continuous across the boundary.  Common dielectrics are air, glass, and 

polystyrene foam. 

 A resistive sheet, or R-card, is a material which can be thought of as having 

properties of both a PEC and a dielectric.  It is typically a non-magnetic, i.e. permeability 

equal to that of free-space, electrically thin, imperfect conductor of electric current; 



 1-2

therefore, it possesses a finite conductance and a greater than zero resistance.  The total 

tangential electric field incident on an R-card is continuous across the boundary.  Also 

since R-cards are typically electrically thin, the volume current induced by the field 

inside an R-card can be approximated as a surface current, therefore equivalently making 

the total tangential magnetic field discontinuous by the amount of electric current induced 

on the surface of the R-card.  Since R-cards behave in a manner analogous to an electrical 

resistor, they are ideal for radiation absorbers.  A radiation absorber device that makes 

use of R-cards is called a Jaumann absorber.  A Jaumann absorber is designed by 

stacking resistive sheets in descending resistivity value order with the highest valued 

sheets closest to the source of the incident field and placing polystyrene foam or some 

other dielectric material between the sheets.  Determining accurately the resistivity of an 

R-card is critical to the design of a Jaumann absorber.  It is also imperative to 

theoretically predicting the scattering and ultimately the RCS of a resistive sheet.  The 

resistivity of an R-card is typically measured with a four-point probe.  This DC device 

measures the ohms per square of a resistive material simply by placing the probe’s four 

points in contact with the material.  Since electromagnetic fields induce alternating 

current on the surface of a conducting material, another method is to measure the material 

parameters of the resistive sheet in a free-space or waveguide system.  This thesis will 

center on this latter method and present new techniques for determining the resistivity of 

a material from free-space and waveguide material measurements. 
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1.1 Problem Statement 

 In September 2005, RCS measurements were taken of two resistive sheets 

wrapped around a polystyrene foam cylinder (Figure 1-1) to compare with a physical 

optics approximation developed by Michael Havrilla of the Air Force Institute of 

Technology [1].  Measurements were also made of a PEC cylinder to validate the range 

data.  Initial measurements of the two R-cards were quite discouraging, especially the 

892 Ω/sq R-card shown in Figure 1-2.  The RCS range was quickly exonerated as being a 

possible cause of the inaccuracies since the PEC cylinder measurements agreed well with 

theoretical predictions.  Like the RCS range, the math behind the theoretical RCS 

  

  

Figure 1-1.  R-cards wrapped around a polystyrene foam cylinder.  On the left is an R-
card with a measured DC resistivity of 892 Ω/sq.  On the right is another R-card with a 
measured DC resistivity of 64 Ω/sq. 
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Figure 1-2.  Vertical and horizontal polarization monostatic RCS plots of the 892 Ω/sq R-
card.  The RCS was predicted and measured at 7 GHz.  In both polarizations, the 
theoretical RCS is approximately 1.5 dBsm lower than measured.  Experience has shown 
a ±0.5 dBsm uncertainty in the RCS values obtained from the AFIT range. 
 
 
 
prediction of the 892 Ω/sq R-card was double checked and determined to be accurate.  

The only other possible cause to the theory and measurement mismatches in Figure 1-2 is 

an error in the how the resistivity value of the R-card was determined. 

The resistivity of the 892 Ω/sq R-card, shown in Figure 1-1, was initially 

measured with the four-point probe shown in Figure 1-3.  In Semiconductor Material and 

Device Characterization, Schroder [2] derives the basic theory behind a four-point probe.  

The following background theory on four-point probes relies on his work.  A four-point 

probe in contact with a semi-infinite material with current entering probe 1 and leaving 

probe 4 will experience a voltage drop across probes 2 and 3 according to the following 

expression 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

41

11
2 rr

IV
π
ρ , 

(1.1)
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Figure 1-3.  Guardian model SRM-232 four-point probe. 

 
 
 

where V is the voltage, ρ is the resistivity in ohms per meter, I is the current, and r1 and r4 

are the radial distances from probes 1 and 4 respectively.  Using the nomenclature for 

distances in Figure 1-4, the voltages measured at probe 2 and probe 3 are 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
321

2
11

2 sss
IV
π
ρ  

(1.2)

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

321
3

11
2 sss

IV
π
ρ . 

(1.3)

Taking into account that the probe spacings of most four-point probes are equal and 

subtracting the voltage at probe 3 from the voltage at probe 2, one obtains 

⎟
⎠
⎞

⎜
⎝
⎛=

I
Vsπρ 2 . 

(1.4)
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Figure 1-4.  Four-point probe. 

 
 

For thin materials, thicknesses less than or equal to half the probe spacing, (1.4) must be 

corrected because the material cannot be considered to be semi-infinite in the vertical 

direction.  Considering the thickness of the material, τ, the resistivity ρ equals 

⎟
⎠
⎞

⎜
⎝
⎛=

I
V

)2ln(
πτρ . 

(1.5)

Dividing both sides of the above expression by τ results in 

⎟
⎠
⎞

⎜
⎝
⎛==

I
V

s )2ln(
π

τ
ρρ , 

(1.6)

where ρs is the sheet resistance of the material and has the units ohms per square.  For the 

remainder of this thesis, resistivity will be used equivalently for sheet resistance. 

Since the four-point probe pictured in Figure 1-3 is a DC device, it can only 

measure the resistive properties and not any of the reactive properties that also have an 

effect on the RCS of an R-card.  Since DC methods have this shortfall, AC methods for 

determining resistivity will be more accurate.  This thesis will focus on two such AC 
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methods, free-space and waveguide material measurement systems.  Both of these 

systems take forward and reverse reflection, S11 and S22, and forward and reverse 

transmission, S21 and S12, coefficient measurements.  Both the reflection and transmission 

measurements can be used to determine the resistivity of a material.  In some cases it is 

more advantageous to use the reflection measurements because a resistive sheet measured 

at certain frequencies will be predominately reflective with very little energy transmitted.  

While in other cases using the transmission measurements is more desirable because 

unlike the reflection measurements, the transmission measurements do not depend on the 

position of the material being measured relative to the calibration plane.  Because of the 

latter, this thesis will focus on methods for determining the resistivity of a material using 

the transmission measurements. 

 
1.2 Limitations 

 While the validity of the transmission measurements does not depend on the 

position of the sample relative to the calibration plane, there are instances where it is not 

possible to utilize them for determining resistivity.  One such instance occurs when trying 

to make resistivity measurements at low frequencies.  Under these conditions resistive 

sheets are highly reflective making the transmission measurements too near the noise 

floor of the system for the resistivity of the sample to be accurately determined.  

Knowledge of the conditions under which a resistive sheet will be used is imperative to 

determining the validity of using transmission based resistivity measurements. 
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1.3 Scope 

 There are certainly other ways, including microstrip and coaxial systems, to 

determine the resistivity of a material.  This thesis focuses only on free-space and 

waveguide system methods and validates those methods on the two R-cards shown in 

Figure 1-1.  Further reducing its scope, this thesis focuses on using the forward 

transmission coefficient measurement, S21, from those two systems to determine 

resistivity.  Forward transmission measurement data gathered from the free-space system 

is from 2 to 18 GHz, while data gathered from the waveguide system is from the X-band 

(8.2 to 12.4 GHz).  Although the data presented is from those particular frequencies, the 

methods developed relating resistivity to S21 are applicable at any frequency granted S21 

can be accurately measured. 

 
1.4 Thesis Organization 

 Chapter 2 provides the theoretical background starting with Maxwell’s equations, 

working through vector potentials, and finally introducing transverse electromagnetic and 

transverse electric modes.  Chapter 3 shows the development of free-space and 

waveguide methods for determining the resistivity of an R-card using the forward 

transmission coefficient measurement.  The chapter begins with free-space techniques 

and introduces the root search, first, second, and Nth order approximations, and the thin 

sheet approximation methods.  The chapter ends with waveguide techniques and 

introduces waveguide versions of the root search, first, second, and Nth order 

approximations, and the thin sheet approximation methods.  It also introduces another 

waveguide method that relies on the principle of mode matching: the vertical mode 
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matching technique.  Chapter 4 presents experimental results and compares the methods 

introduced in chapter 3 to one another.  Lastly, the thesis concludes in chapter 5 with 

recommendations for future research. 
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2. Background 
 
 

This chapter provides the theoretical background for the free-space and 

waveguide methods for determining resistivity shown in chapter 3.  The theory presented 

in this chapter comes from the combined work of Collin [3], Harrington [4], and Balanis 

[5].  Any method for predicting the behavior of electromagnetic waves begins with 

Maxwell’s equations, 

BjME ω−−=×∇  (2.1)

DjJH ω+=×∇  (2.2)

evqD =⋅∇  (2.3)

mvqB =⋅∇ , (2.4)

shown here in time harmonic form.  The curl equations, (2.1) and (2.2), are known as 

Faraday’s Law and Ampere’s Law respectively, where E  is the electric field intensity, 

H  is the magnetic field intensity, M  is the magnetic current density, J  is the electric 

current density, B  is the magnetic flux density, D  is the electric flux density, and ω  is 

the radian frequency.  Equations (2.3) and (2.4) are known as Gauss’ Laws for electric 

and magnetic fields, where evq  is the electric charge density and mvq  is the magnetic 

charge density.  This thesis will deal with linear, homogeneous, isotropic materials for 

which  

D E
B H

ε
μ

=

=
, 

(2.5)
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where ε  and μ  are the permittivity and permeability of the material.  This simplifies 

Maxwell’s equations to 

HjME ωμ−−=×∇  (2.6)

EjJH ωε+=×∇  (2.7)

ε
evqE =⋅∇  

(2.8)

μ
mvqH =⋅∇ . 

(2.9)

 

2.1 Helmholtz Wave Equations and Vector Potentials 

 Using Maxwell’s equations, (2.6) through (2.9), directly to determine the electric 

and magnetic fields of a system is difficult because the equations are first-order, coupled, 

partial differential equations.  However, using those coupled equations, second-order, 

uncoupled, partial differential equations can be formed which are more easily solved.  

The Helmholtz electric field wave equation is formed by taking the curl of both sides of 

Faraday’s Law (2.6): 

HjME ×∇−×−∇=×∇×∇ ωμ . (2.10)

Making use of the vector identity 

( ) AAA 2∇−⋅∇∇=×∇×∇ , (2.11)

and Ampere’s Law (2.7), equation (2.10) becomes 

( ) ( )EjJjMEE ωεωμ +−×−∇=∇−⋅∇∇ 2 . (2.12)

Substituting in (2.8) and simplifying results in the Helmholtz electric field wave equation 

with sources,  
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evqJjMEkE ∇++×∇=+∇
ε

ωμ 122 , 
(2.13)

where  

μεω 22 =k . (2.14)

A very similar procedure can be done to Ampere’s Law to arrive at the Helmholtz 

magnetic field wave equation with sources: 

mvqMjJHkH ∇++×−∇=+∇
μ

ωε 122 . 
(2.15)

If the sources are not contained in the region of interest, (2.13) and (2.15) simplify to the 

source-free Helmholtz wave equations: 

022 =+∇ EkE  (2.16)

and 

022 =+∇ HkH . (2.17)

 Since (2.16) and (2.17) are of the same form, their solutions will also be of the 

same form.  Expanding the electric field in (2.16) into its components results in 

( ) ( ) 0ˆˆˆˆˆˆ 22 =+++++∇ zyxzyx EzEyExkEzEyEx . (2.18)

Since the x, y, and z components of the electric field are orthogonal to each other, the 

solution of (2.18) in one direction is completely independent of the solution of (2.18) in 

another direction.  Therefore, the vector equation, (2.18), can be expressed as three scalar 

equations of the form 

0

0

0

22

22

22

=+∇

=+∇

=+∇

zz

yy

xx

EkE

EkE

EkE

. 

(2.19)
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As before, since the three scalar equations have the same form, their solutions will have 

the same form.  Expanding the Laplacian operator in the first scalar expression results in 

02
222

=+
∂

∂
+

∂
∂

+
∂
∂

x
xxx Ek

z
E

y
E

x
E . 

(2.20)

Using separation of variables, the solution is assumed to be of the form 

)()()( zhygxfEx =  (2.21)

for the purpose of transforming the partial derivatives into ordinary derivatives.   This 

results in  

02
222

=+++ fghk
dz

hdfg
dy

gdfh
dx

fdgh . 
(2.22)

Dividing by fgh and subtracting k2 from both sides of (2.22) yields 

2
222 111 k

dz
hd

hdy
gd

gdx
fd

f
−=++ . 

(2.23)

Since each of the three functions in (2.23) is of one variable independent of the other two 

and summed to equal a constant, one gets 

2
2

2
2

2
2

1

1

1

z

y

x

k
dz

hd
h

k
dy

gd
g

k
dx

fd
f

−=

−=

−=

, 

(2.24)

where 

2222
zyx kkkk ++= . (2.25)
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The expressions in (2.24) are now second-order, linear, homogeneous differential 

equations and since they are of the same form, their solutions are also of the same form.  

The function f,  

( ) xjkxjk xx eAeAxf 21 += −  or ( ) ( ) ( )xkBxkBxf xx sincos 21 +=  (2.26)

as well as g and h, can take either expression depending on the nature of the wave.  If, for 

example, the wave travels in the x direction and stands in the other two, the solution to 

the Helmholtz electric field wave equation will be 

( )( )( )zkCzkCykBykBeAeAE zzyy
xjkxjk

x
xx sincossincos 212121 +++= − , (2.27)

where A1, A2, B1, B2, C1, and C2 are constants whose values are obtained by enforcing the 

boundary conditions of the problem. 

2.1.1 The Magnetic Vector Potential. 

 Since the Helmholtz wave equations are linear, superposition can be used to 

develop intermediate quantities.  These intermediate quantities in electromagnetics are 

called vector potentials.  There are two vector potentials in electromagnetics:  the 

magnetic vector potential and the electric vector potential.   

The magnetic vector potential, or A , is associated with the magnetic flux density 

B .  In a source-free environment, 0B∇ ⋅ = ; therefore, one can set    

AB ×∇= . (2.28)

Using (2.28) and noting the relationship between the magnetic flux density and the 

magnetic field intensity (2.5) produces in an expression for the magnetic field due to the 

magnetic vector potential: 
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AH A ×∇=
μ
1 . 

(2.29)

Substituting (2.29) into source-free Faraday’s Law (2.6) and simplifying brings about the 

following expression 

0AE j Aω⎡ ⎤∇× + =⎣ ⎦ . (2.30)

As a results of (2.30), there exists a scalar electric potential function, eφ , such that 

A eE j Aω φ+ = −∇ . (2.31)

Solving (2.31) for the electric field due to the magnetic vector potential results in 

AjE eA ωφ −−∇= . (2.32)

Taking the curl of both sides of (2.29) and using vector identity (2.11) results in 

( ) AAAH A
2∇−⋅∇∇=×∇×∇=×∇μ . (2.33)

Substituting in Ampere’s Law (2.7) where the electric current density is an electric 

current impressed by the field, brings about 

( ) AAEjJ A
2∇−⋅∇∇=+ ωμεμ . (2.34)

Substituting (2.32) into (2.34) and simplifying produces 

( )AjJAkA e ⋅∇∇+∇+−=+∇ φωμεμ22 . (2.35)

To fully characterize the magnetic vector potential both the curl and divergence of the 

vector must be specified.  The curl of the magnetic vector potential was defined in (2.28); 

however, no value has been specified for the divergence of the magnetic vector potential.  

Letting  

ejA ωμεφ−=⋅∇  (2.36)

and substituting it into (2.35) produces 
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JAkA μ−=+∇ 22 . (2.37)

More importantly, simple expressions for the electric and magnetic fields in terms of the 

magnetic vector potential can be formed from (2.29) and from substituting (2.37) into 

(2.34): 

( )( )

AH

AkA
j

E

A

A

×∇=

+⋅∇∇=

μ

ωμε
1

1 2

. 

(2.38)

To get the total electric and magnetic fields however, the fields due to the magnetic 

vector potential must be added to the fields due to the electric vector potential.  The 

electric vector potential will be introduced in the next subsection. 

2.1.2 The Electric Vector Potential. 

 Following from the principle of superposition, the total fields are obtained when 

the contributions to the fields from both vector potentials are added together.  In the 

previous subsection, the magnetic vector potential was introduced.  In this subsection, the 

electric vector potential will be introduced.  The electric vector potential, or F , is linked 

to the electric flux density D .  In a source-free region, 0D∇ ⋅ = ; therefore, one can set 

FD ×−∇= . (2.39)

Using the relationship between the electric field intensity and the electric flux density 

(2.5), the electric field due to the electric vector potential becomes 

FEF ×∇−=
ε
1 . 

(2.40)

Substituting (2.40) into source-free Ampere’s Law (2.7) produces 
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[ ] 0=+×∇ FjH F ω . (2.41)

As a result of (2.41), there exists a scalar magnetic potential function, mφ , such that 

F mH j Fω φ+ = −∇ . (2.42)

By solving (2.42) for FH , an expression for the magnetic field due to the electric vector 

potential can be obtained: 

FjH mF ωφ −−∇= . (2.43)

Taking the curl of both sides of (2.40), using Faraday’s Law (2.6), substituting in (2.43), 

and simplifying brings about 

( ) mjFMFkF φωμεε ∇+⋅∇∇+−=+∇ 22 . (2.44)

Exactly like the magnetic vector potential, to fully characterize the electric vector 

potential, the divergence and curl of the vector must be defined.  Expression (2.40) 

defines the curl of the electric vector potential.  Letting  

mjF ωμεφ−=⋅∇  (2.45)

results in the following wave equation for the electric vector potential 

MFkF ε−=+∇ 22 . (2.46)

The expressions for the electric and magnetic fields due to the electric vector potential are 

( )( )FkF
j

H

FE

F

F

21

1

+⋅∇∇=

×∇−=

ωμε

ε  . 

(2.47)

Following from superposition, expressions for the total electric and magnetic fields can 

now be obtained by adding the field contributions from the magnetic and electric vector 

potentials together: 
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( )( )

( )( )FkF
j

AHHH

FAkA
j

EEE

FA

FA

2

2

11

11

+⋅∇∇+×∇=+=

×∇−+⋅∇∇=+=

ωμεμ

εωμε
 . 

(2.48)

 

2.2 Transverse Electromagnetic Waves (TEM) 

 A transverse electromagnetic wave, or plane wave in Cartesian coordinates, is a 

wave in which the electric and magnetic fields are directed transverse to the direction the 

wave propagates.  A TEM wave exists in free-space, coaxial cable, and microstrip 

environments.  Expressions for the electric and magnetic fields of a TEM wave 

propagating in the z direction, TEMZ, can be found using magnetic and electric vector 

potentials introduced in the previous subsections.  Since a TEMZ wave exists in 

environments where there are no sources or impressed sources, expressions for the 

electric and magnetic fields that compose it must come from 

0
0

22

22

=+∇

=+∇

FkF
AkA . 

(2.49)

The solutions of the equations in (2.49) are of the same form as the Helmholtz wave 

equation solutions shown in (2.26) and (2.27).  Since the wave propagates in the z 

direction, only the magnetic and electric vector potentials in the z direction will be of 

consequence, therefore 

( )( )( )
( )( )( )zjkzjkyjkyjkxjkxjk

z

zjkzjkyjkyjkxjkxjk
z

zzyyxx

zzyyxx

eFeFeEeEeDeDF

eCeCeBeBeAeAA

212121

212121

+++=

+++=
−−−

−−−

. 
(2.50)

It follows from (2.25) that since the wave propagates completely in the z direction, the 

wave numbers in the x and y directions, xk  and yk , must be zero.  Rolling the 
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coefficients together, the expressions for the magnetic and electric vector potentials 

become 

jkzjkz
z

jkzjkz
z

eFeFF

eAeAA

21

21

+=

+=
−

−

, 
(2.51)

where the coefficients, A1, A2, F1, and F2, could be functions of x and y and k equals zk .  

Using the relationships in (2.48), the electric and magnetic fields in a TEMZ wave are 

given by the following expressions 

( )( )

( )( )zzzFA

zzzFA

FzkFz
j

AzHHH

FzAzkAz
j

EEE

ˆˆ1ˆ1

ˆ1ˆˆ1

2

2

+⋅∇∇+×∇=+=

×∇−+⋅∇∇=+=

ωμεμ

εωμε
 . 

(2.52)

Expanding and simplifying (2.52) produces 

1 1

1 1

1 1

1 1

1 1

1 1

0

1 1

1 1

jkz jkz jkz
x x x

jkz jkz jkz
y y y

z

jkz jkz jkz
x x x

jkz jkz
y y y

A FE e E e E e
x y

A FE e E e E e
y x

E

F AH e H e H e
x y

F AH e H e H
y x

εμε

εμε

μμε

μμε

+ − −

+ − −

+ − −

+ − −

⎛ ⎞∂ ∂
= − ≡ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂

= + ≡ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
=

⎛ ⎞∂ ∂
= + ≡ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂

= − ≡ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∓

∓

∓

∓

∓

∓

∓

∓

0

jkz

z

e

H =

, 

(2.53)

using the tje ω  time convention.  The constants in (2.53) are found by enforcing the 

boundary conditions of the problem.  It is evident from (2.53) that the electric and 

magnetic fields of a TEMZ wave are related by the following expression 
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EkH ×= ˆ1
η

, 
(2.54)

whereη  is the intrinsic impedance of the medium and equal to   

ε
μη =  

(2.55)

and k̂  is the unit vector pointing in the direction of propagation.  In the case of a forward 

traveling TEMZ wave, k̂  is ẑ .   

Transverse electromagnetic is the simplest form, or mode, a wave can take and 

therefore is commonly referred to as mode zero.  Other more complicated modes, such as 

transverse electric (TE) and transverse magnetic (TM), exist.  In the next section, 

transverse electric modes will be introduced. 

 
2.3 Transverse Electric Waves (TE) 

 In the last section, the transverse electromagnetic mode was introduced.  This 

section will introduce transverse electric modes.  A TE mode is formed when the energy 

is constrained inside a waveguide.  Like a TEM mode, the electric field in a TE mode is  

directed transverse to the direction of propagation; unlike a TEM mode, the directions of 

the magnetic field in a TE mode are under no such requirement.  Expressions for the 

electric and magnetic fields for a transverse electric mode traveling in a z directed, TEZ, 

waveguide can be found by using magnetic and electric vector potentials.  In this case, 

the electric vector potential in the z direction is the only quantity necessary and it must 

satisfy the following scalar wave equation 

022 =+∇ zz FkF  [5]. (2.56)
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Figure 2-1.  Wave propagating in a z directed waveguide. 

 
 

The solutions to (2.56) are of the same form as (2.26) and (2.27).  Since the energy is 

confined in the x and y directions and free to propagate in the z direction, the solutions to 

(2.56) are of the form 

( )( )( )zjkzjk
yyxxz

zz eCeCykBykBxkAxkAF 212121 sincossincos +++= − . (2.57)

Figure 2-1 shows how the wave propagates down the guide in the z direction.  Since it 

does not completely travel in the z direction, the wave numbers in the x and y directions 

could have values and cannot be set equal to zero.  Using (2.48), the electric and 

magnetic fields of a TEZ mode are given by the following expressions 

( )( )zzF

zF

FzkFz
j

HH

FzEE

ˆˆ1

ˆ1

2+⋅∇∇==

×∇−==

ωμε

ε  . 

(2.58)

Expanding and simplifying (2.58) results in 

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

cos sin sin cos

sin cos cos sin

0

z z

z z

y jk z jk z
x x x y y

jk z jk zx
y x x y y

z

k
E A k x A k x B k y B k y C e C e

kE A k x A k x B k y B k y C e C e

E

ε

ε

−

−

= + − +

= − − + +

=

 

(2.59)
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

2 2

1 2 1 2 1 2

sin cos cos sin

cos sin sin cos

cos sin cos sin

z z

z z

z z

jk z jk zx z
x x x y y

y z jk z jk z
y x x y y

jk z jk zz
z x x y y

k kH A k x A k x B k y B k y C e C e

k k
H A k x A k x B k y B k y C e C e

k kH A k x A k x B k y B k y C e C e
j

ωμε

ωμε

ωμε

−

−

−

= − + −

= + − −

−
= + + +

, 

 

where the constants A1, A2, B1, B2, C1, and C2 are found by imposing the boundary 

conditions of the problem.  The tangential electric and tangential magnetic fields in a TEZ 

mode are related by the following expression 

1 ˆ
t tH k E

Z
= × , 

(2.60)

where Z is the wave impedance of the medium filling the waveguide and equal to  

zjk

jZ

=

=

γ
γ
ωμ

 
(2.61)

and k̂  is the unit vector pointing in the direction of traveling wave propagation.  In the 

case of a forward traveling TEZ wave, k̂  is ẑ .  Setting the wave number in the z direction 

equal to zero in (2.25) results in 

2 2
c x yk k k= + , (2.62)

where ck  is the cut-off wave number.  Since k is related to frequency by (2.14), equation 

(2.62) actually gives the cut-off frequency.  Physically, the cut-off frequency is the 

frequency at which wave propagation in the z direction commences.  Waves with 

frequencies above the cut-off frequency will propagate in the waveguide; whereas, waves 

with frequencies below the cut-off frequency will be heavily damped, or evanescent.  

Cut-off frequency will be re-examined in chapter 3. 
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2.4 Summary 

 In this chapter, the background behind transverse electromagnetic and transverse 

electric modes was introduced.  These two concepts will form the basis of the theoretical 

work shown in chapter 3.  Transverse magnetic modes were not introduced in this chapter 

because they will not be used in this thesis.  Their development can be found in Collin 

[3], Harrington [4], and Balanis [5]. 
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3. Methodology 
 
 

Building on the theoretical background presented in chapter 2, this chapter will 

show the development of several techniques for extracting the resistivity of an R-card in 

free-space and waveguide systems using the forward transmission measurement.  The 

theory presented in this chapter will follow the same basic format: derive the fields in 

each region of the problem, enforce boundary conditions, and solve for the 

electromagnetic parameters of the material.  Free-space methods will be presented first 

followed by waveguide techniques. 

 
3.1 Free-Space Methods 

A free-space material measurement system, or focused arch system, is a technique 

for material parameter extraction in which a TEM wave is transmitted from a horn 

antenna and focused through lenses.  The wave then passes through or is reflected from 

an unknown material and is received by another horn antenna (Figure 3-1).  Since the 

material sample size is large in its lateral dimensions compared to the wavelength of the 

incident TEM wave and to the size of the focused illuminated area produced by the 

lenses, the sample can be approximated as infinite in extent and scattering effects such as 

diffraction from the material’s edges can be ignored.  Figure 3-2 shows the geometry of 

the free-space problem.  The electric and magnetic fields in region I, II, and III have the 

same form as (2.53) and are 
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Figure 3-1.  Free-space, or focused arch material measurement system. 

 
 

 

 
Figure 3-2.  Geometry of the free-space problem. 
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, 

(3.1) 

where 0k , 0η , k , and η  are the wave numbers (2.14) and intrinsic impedances (2.55) of 

free-space and the unknown material respectively. 

3.1.1 Root Search Method. 

Applying tangential continuity boundary conditions to the fields of each region at 

0z =  and z τ=  results in the following expressions 

0

00

ηηη

ηηηη

ττ

ττ

+−
−

+

+−−+

−+−+

−+−+

=−

=+

−=−

+=+

IIIjkIIjkII

III
jk

II
jk

II

IIIIII

IIIIII

EeEeE

EeEeE

EEEE

EEEE

. 

(3.2) 

Since an expression for the forward transmission coefficient, S21, is desired and it is equal 

to the field received at antenna 2 divided by the field transmitted from antenna 1 (Figure 

3-1), the expressions in (3.2) must be divided by +
IE  resulting in 
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0 0

0

1

1 1 1 1

1 1 1

I II II

I I I

I II II

I I I

jk jkII II III

I I I

jk jkII II III

I I I

E E E
E E E

E E E
E E E

E E Ee e
E E E

E E Ee e
E E E

τ τ

τ τ

η η η η

η η η

− + −

+ + +

− + −

+ + +

+ − +
−

+ + +

+ − +
−

+ + +

+ = +

− = −

+ =

− =

. 

(3.3) 

Rearranging (3.3) into matrix form produces 

0
0

0

1 1 1 0
1

1 1 1 0 1

0 1
0

1 1 10 0

jk jk

jk jk

t
e e r

e e

τ τ

τ τ

η η η
η

η η η

−

−

− −⎡ ⎤
−⎡ ⎤⎢ ⎥ Γ− − ⎡ ⎤ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − Τ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

, 

(3.4) 

where 

, , , andI II II III

I I I I

E E E Et r
E E E E

− + − +

+ + + +Γ = = = Τ = . 
(3.5) 

An expression for Τ, which is related to the forward transmission coefficient by the 

following expression 

τ0
21

jkeS Τ= , (3.6) 

can now be obtained by solving the system of linear equations.  After Gaussian 

elimination to reduce the matrix in (3.4) to the identity matrix and using (3.6), S21 equals 

( )( ) ( )
τ

ττττ ηηηη
ηη

0

0
22

0

0
21 2

4 jk
jkjkjkjk e

eeee
S −− ++−+

= . 
(3.7) 

Using the following forms of the Euler formula 
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θ

θ
θθ

θθ

sin2
cos2
jee

ee
jj

jj

=−

=+
−

−

, 
(3.8) 

(2.55), (2.14), and the fact that R-cards are non-magnetic, (3.7) becomes 

c
j

rrrrr

r e

c
j

cc
j

S
ωτ

εωτεωτεεωτε

ε

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

=
sincos2sin

2
21 , 

(3.9) 

where 
0

r
εε
ε

=  is the relative permittivity of the R-card and c,  

s
m 2997924581

00

==
με

c , 
(3.10)

is the speed of light in a vacuum.  It is not possible to analytically solve (3.9) for rε  in 

terms of S21; therefore, a solution to (3.9) must be found using numerical techniques 

which compare the theoretical expression on the right hand side of (3.9) to measured S21 

data.  The simplest numerical technique to implement is the complex one-dimensional 

Newton’s method.  It attempts to solve the expression 

21 21( , ) ( ) 0thy meas
rS Sε ω ω− =  (3.11)

within a certain precision and is a derivative based technique.  The initial guess is 

supplied by the user while subsequent guesses are supplied by the following expression 

( )
nrr

meas
r

thy

r

meas
nr

thy

nrnr

SS
d
d

SS

εε

ωωε
ε

ωωε
εε

=

+

−

−
−=

)(),(

)(),(

2121

2121
1 . 

(3.12)

In expressions (3.11) and (3.12), 21
thyS  and 21

measS  are 
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21 21

21 21

jthy c

jmeas raw c

S S e

S S e

ωτ

ωτ

−

−

=

=

, 
(3.13)

where 21
rawS  is measured forward transmission data directly from the network analyzer.  

With this technique, highly accurate values for rε  can be obtained which are related to 

the resistivity of the R-card by  

( )10

0

−
−

=
r

e k
jR
ετ
η  [6]. 

(3.14)

Since Newton’s method is highly sensitive to the initial guess, it would be much more 

convenient if a function of relative permittivity, resistivity by (3.14), in terms of S21 could 

be derived.  Although it is impossible to create such an expression using (3.9) directly, it 

becomes possible when approximations are made using Maclaurin series. 

3.1.2 First, Second, and Nth Order Approximations. 

As stated in the previous subsection, (3.9) cannot be solved explicitly for rε  in 

terms of S21.  However, approximate solutions can be obtained by making use of the 

Maclaurin series for sine and cosine.  A paper written by Sarabandi and Ulaby [7] use 

this concept to determine the relative permittivity of foliage using the forward reflection 

measurement.  This is the first time such an idea has been applied to material parameter 

extraction using the forward transmission measurement.  If the value of the wave number 

times the thickness of the R-card is much less than one, then the first order terms from the 

Maclaurin series for sine and cosine,  

1cos
sin

≈
≈

x
xx , (3.15)

can be substituted into (3.9) to form 
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21

2

2

j rc

r r r r

S e
j j

c c

ωτ ε
ωτ ωτε ε ε ε

−
≈

+ +
. 

(3.16)

Substituting 21
rawS  for S21 in (3.16) and simplifying produces a function of rε  in terms of 

measS21  (3.13): 

21 21

21

2 2 meas meas

r meas

c cS j S
j S

ωτε
ωτ

− −
≈ . 

(3.17)

An expression for the resistivity of the R-card can now be obtained by substituting in 

(3.14) and simplifying: 

0 21

21 212 2 2

meas

e meas meas

cSR
c cS j S

η
ωτ

≈
− −

. 
(3.18)

Since the above expression is formed from only the first order terms of the Maclaurin 

series, (3.18) is called the first order approximation. 

 If in addition to the first order terms the second order terms of the Maclaurin 

series for sine and cosine are retained, another approximate function of resistivity in 

terms of measS21  can be obtained.  The Maclaurin series for sine and cosine, retaining first 

and second order terms only, are 

2
1cos

sin
2xx

xx

−≈

≈
. 

(3.19)

Substituting (3.19) into (3.9) produces the following expression 

21 2 2

2

2

2

rmeas

r r r r r r

S
j j

c c c

ε
ωτ ω τ ωτε ε ε ε ε ε

≈
+ − +

. 
(3.20)

After some algebraic manipulation, a function of rε  in terms of measS21  can be written: 
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( )
2 2

21 21
2 2

21

2 2 meas meas

r meas

c c S j cS
S j c

ωτε
ωτ ω τ

− −
≈

−
. 

(3.21)

Substituting in (3.14) and simplifying results in 

measmeasmeas

measmeas

e ScSjScc
cSjScR

21
22

2121
22

21021
2

0

222 τωωτ
ωτηη

+−−
+

≈ . 
(3.22)

Like the first order approximation, (3.22) is known as the second order approximation 

since it makes use of the second order terms in the Maclaurin series for sine and cosine. 

 In general, any order approximate function can be obtained by retaining the 

desired order terms from the Maclaurin series for sine and cosine.  Starting at third order, 

however, the expressions relating rε  and measS21  become polynomials and are not able to 

be manipulated into simple functions like (3.17) and (3.21).  This is not to say that higher 

than second order approximations are worthless.  In many cases it is easier to find the 

roots of a polynomial, especially quadratic, cubic, or other low order polynomials, than it 

is to solve a transcendental equation like (3.9).  For a general N order expression, the 

following Maclaurin series are substituted into (3.9) 

( )
( )
( )
( )

2 1

0

2

0

1
sin

2 1 !

1
cos

2 !

n
n

n

n
n

n

x x
n

x x
n

∞
+

=

∞

=

−
=

+

−
=

∑

∑
, 

(3.23)

producing this expression after some simplification 
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( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

2 12 1

021

22

0

2 12 1

0

12
2 1 !

1
2

2 !

1
2 1 !

nn n
r

r rmeas
n

nn n

r r
n

nn n

r
n

j
S n c

n c

j
n c

ε ωτε ε

ωτε ε

ωτ ε

++∞

=

∞

=

++∞

=

− ⎛ ⎞= ⎜ ⎟+ ⎝ ⎠

− ⎛ ⎞+ ⎜ ⎟
⎝ ⎠

− ⎛ ⎞+ ⎜ ⎟+ ⎝ ⎠

∑

∑

∑

. 

(3.24)

Further simplification and expansion of (3.24) results in 

( )
( )

( )
( )

( )
( )

21

2 3

3 4 5
2

1 2 1 2 2 1

20 2

2
2! 3!

2
3! 4! 5!

...

1 2 1 1
2 1 ! 2 ! 2 1 !

...

meas

r

r

N N NN N N
N
r

j
c S

j j
c c c

j j
c c c

j j
N c N c N c

ωτ

ωτ ωτ ωτε

ωτ ωτ ωτε

ωτ ωτ ωτε
− − +

= + −

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

+ +

⎡ ⎤− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
+

 

(3.25)

or in summation form 

( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 2 22

2 1
2 1

121 2

2 2 1 1
2 2 2 2 1 1

2 1 !
1

n n

n
n nr

meas n
n n n

jc n n
j c n

S c c n
j

ωτ
ε ωτ

ωτ ωτ
ωτ

− −

∞
−

+
=

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥− − = + + −
⎢ ⎥+
⎢ ⎥+ −⎣ ⎦

∑ . 

(3.26)

The first order approximation, (3.17), comes from a combination of the terms on the right 

hand side of (3.25) up until the first term in the first bracketed quantity.  The second 

order approximation, (3.21), comes from a combination of the terms on the right hand 

side of (3.25) up until the first two terms in the first bracketed quantity.  The third order 
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approximation would be formed from a combination of the terms on the right hand side 

of (3.25) up until the first term from the second bracketed quantity: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−≈−−

3
2

32

21 !3!3!2
222

c
j

c
j

cc
j

c
j

S rrmeas
ωτεωτωτωτεωτ . 

(3.27)

This pattern of order approximations continues indefinitely.  Once rε is found, its values 

can be inserted into (3.14) to determine the resistivity of the R-card. 

3.1.3 Thin Sheet Approximation. 

The last free-space technique presented is the thin sheet approximation.  The thin 

sheet approximation derives its name from the resistive boundary conditions that are used 

to derive it.  In Approximate Boundary Conditions in Electromagnetics, by Senior and 

Volakis [6], the resistive boundary conditions,  

[ ] 0ˆ =×
+
−En  (3.28)

and 

[ ]+−××=× HnnREn e ˆˆˆ , (3.29)

where n̂  is the unit normal pointing in direction away from the R-card’s surface, are 

derived electromagnetically.  Physically (3.28) implies that the electric field is continuous 

across the R-card boundary; whereas, (3.29) states that the magnetic field is 

discontinuous across the R-card boundary by the amount of electric current induced in 

the resistive sheet.  It is easy to visualize physically what is taking place by an equivalent 

circuit theory model.  Figure 3-3 shows a lumped resistor, which models the electrically- 

thin R-card, in a classic parallel configuration.  The voltage, which relates to the electric 

field, on the either side of a parallel connection is equal; however, the current, which  
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Figure 3-3.  Resistive boundary conditions circuit analogy. 

 
 

relates to the magnetic field, is discontinuous by the amount of current that flows through 

the resistor in parallel.  It is in this way that (3.29) very closely resembles Ohm’s Law. 

 To apply the resistive boundary conditions some changes need to be made to the 

fields expressions in (3.1): 

( )

zjk
III

III
III

zjk
IIIIII

zjk
I

zjk
I

I
I

zjk
I

zjk
II

eE
x

yEkH

eE
y
x

E

eE
x
y

eE
x

yEkH

eEeE
y
x

E

0

0

00

00

ˆ
ˆ1ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ1ˆ

ˆ
ˆ

00

00

−+

−+

−−+

−−+

⎥
⎦

⎤
⎢
⎣

⎡
−

=
×

=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡−
+⎥

⎦

⎤
⎢
⎣

⎡
−

=
×

=

+⎥
⎦

⎤
⎢
⎣

⎡
=

ηη

ηη
. 

(3.30)

Applying (3.28) and (3.29), where n̂  in accordance with Figure 3-2 is z− , results in the 

following two expressions 

[ ]+−+−+

+−+

−−=+

=+

IIIIIeII

IIIII

EEEREE

EEE

0

1
η

. 
(3.31)

Dividing both expressions by +
IE  and rearranging (3.31) into matrix form produces 
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0 0 0

1 1 1

1 1e e eR R R
η η η

− −⎡ ⎤ ⎡ ⎤
Γ⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥+ −Τ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 
(3.32)

where  

,I III

I I

E E
E E

− +

+ +Γ = Τ = , 
(3.33)

and in this case 

21 21 21
meas rawS S S= Τ = = , (3.34)

no phase shift required.  As in the root search technique, an expression for 21
measS  can be 

found by inverting the 2x2 matrix, 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

=

⎥
⎦

⎤
⎢
⎣

⎡
=

−

1121

1222

21122211

1

2221

1211

1
aa
aa

aaaa
A

aa
aa

A
, 

(3.35)

in (3.32) and multiplying it by the known vector on the right hand side of the expression.  

After matrix multiplication and some algebra, 21
measS  equals 

21
0

2
2

meas e

e

RS
Rη

=
+

. 
(3.36)

Solving (3.36) for Re in terms of 21
measS  results in the following function 

0 21

212 2

meas

e meas

SR
S

η
=

−
. 

(3.37)

Expression (3.37) is known as the thin sheet approximation for the resistivity of an R-

card as shown in Radar Cross Section, by Knott, Shaeffer, and Tuley [8].  The authors, 

however, do not present a derivation of the expression. 
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Figure 3-4.  Geometry of the waveguide problem. 

 
  

The value of the thin sheet approximation is its simplicity when compared to the 

root search and Nth order approximations.  Generally it turns out to be an order 2.1 

approximation in terms of accuracy, being slightly more accurate than the second order 

approximation.  In the next section, waveguide methods will be introduced, including 

waveguide versions of the methods presented in this section. 

 
3.2 Waveguide Methods 

In the previous section, the root search method, the first, second, and Nth order, 

and the thin sheet approximations for a free-space system were introduced.  In this 

section, waveguide versions of those methods and also a mode matching measurement 

technique will be derived.  Figure 3-4 shows the geometry of the ZTE10  excitation, fully-

filled waveguide problem.  Regions I and IV in Figure 3-4 are air filled regions and 

region II is the R-card region.  Since R-cards are thin and cannot support themselves in a 

waveguide sample holder, they are typically supported by a known backing material, 

such as acrylic or polystyrene foam.  This known support backing is represented by 
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region III.  The fields in regions I, II, III, and IV take the form of (2.59).  Enforcing the 

boundary condition at the walls of the waveguide—that is, the tangential electric field 

must be zero at the surface of a PEC—for all regions results in 

( )

( )

( )

, ,

, ,

, ,

, , ,
,

, , ,
, ,

2

, ,2
, ,

ˆ sin

ˆ sin

ˆ cos

ˆ sin

I II I II

I II I II

I II I II

z z
I II I II I II

I II

z z
I II I II I II

I II I II

z z
I II I II

I II I II
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E y x E e E e
a a

H x x E e E e
a Z a
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E y x
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γ γ

γ γ
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π π
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⎝ ⎠
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2

2

ˆ sin

ˆ cos

ˆ sin

ˆ
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III III
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z z
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z
IV IV
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E e E e
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a Z a
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γ τ γ τ
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⎞ +⎜ ⎟
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⎛ ⎞= −⎜ ⎟
⎝ ⎠

⎛ ⎞+ +⎜ ⎟
⎝ ⎠
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⎝ ⎠
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x z x E e
a j a a

γ τπ π π
ωμ ε
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, 

(3.38)

where 

0

0

, , ,
, , ,

, , ,

2
2

, , , , , , , , , , , ,

0

x

y

I IV

I II IV

I II III IV
I II III IV

I II III IV

I II III IV z I II III IV I II III IV I II III IV

k
a

k

j
Z

jk
a

π

ε ε ε
μ μ μ μ

ωμ
γ

πγ ω ε μ

=

=

= =
= = =

=

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

 

(3.39)
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and a is the dimension of the waveguide in the x direction [5].  The forward transmission 

coefficient, S21, is found by dividing the electric field expression in region IV by the 

forward traveling electric field expression in region I: 

( )0
21

IV IV

I I

E ES e
E E

γ τ
+

+
+ += = . 

(3.40)

Finding an expression for the ratio in (3.40) will be the purpose of the next several 

subsections. 

3.2.1 Root Search Method. 

Enforcing the continuity of tangential fields at 0=z , τ=z , and z τ= + , results 

in the following expressions 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

1 1

1 1

1 1

1 1

1 1

1

II II

II II
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E E E E

E E E E
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E e E e E E
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Z Z

E e E e E

E e
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γ τ γ τ

γ γ

γ

ε ε

ε ε

ε ε

ε ε
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ε
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+ − + −

−+ − + −

−+ − + −

−+ − +

−+

+ = +

− = −

+ = +

− = −

+ =

( ) 1
III

III IV
IV IV

E e E
Z

γ

ε
− +− =

. 

(3.41)

Dividing each expression by +
IE  and rearranging (3.41) into matrix form produces 
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1 1 1 0 0 0
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(3.42)

After performing Gaussian elimination to transform the 6x6 matrix to the identity matrix 

in (3.42) and taking into account the expressions in (3.39), S21 equals 

( ) ( )
( )00

21
0 0

8
III III

II III

III III

Z Z ZS e
e Z Z Y e Z Z Y

γ τ
γ γ

+
−+ −=

+ + −
, 

(3.43)

where 

2
0 02 cos 2 sin 2 sin 2 cosII III z II II z II III z II II z IIY Z Z k jZ k jZ Z k Z Z kτ τ τ τ± = ± + ± . (3.44)

It is not possible to analytically solve (3.43) for the relative permittivity of the R-card in 

terms of the forward transmission coefficient; therefore, (3.43) must be solved 

numerically by a root search routine.  Very similar to the free-space system, 21
thyS  and 

21
measS  become 

( )

( )

0

0

21 21

21 21

thy

meas raw

S S e

S S e

γ τ

γ τ

− +

− +

=

=
 

(3.45)

and values of rε  are iterated until (3.11) is satisfied to within a specified tolerance.  Once 

the R-card’s rε  values have been solved for, (3.14) can be used to obtain the resistivity.  
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It would be much easier if expressions could be derived from (3.43) that take forward 

transmission data as an input and output the relative permittivity without having to worry 

about an initial guess or precision.  In the next subsection, expressions that do exactly 

that will be derived. 

3.2.2 First, Second, and Nth Order Approximations. 

In the previous subsection, the exact solution, (3.43), for the forward transmission 

coefficient was derived.  As in the free-space techniques, if the first order or second order 

terms from the Maclaurin series are substituted in for the sine and cosine expressions in 

(3.43), an approximate function of relative permittivity in terms of measured S21 can be 

obtained.  The first order approximations for sine and cosine are shown in (3.15).  

Substituting (3.15) into (3.43) and (3.44) results in 

( ) ( )
0 0

21
0 0

2 2
20

0 0 0 0
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2 2 2 2

III III
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(3.46)

Rearranging (3.46) and substituting in the equivalent expression for z IIk  (3.39) produces 
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(3.47)
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Solving (3.47) for rε  produces the following approximate function 

( ) ( )6
1 4 5 3 2 2 4 5 3 2
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r measA A A

S
ε

⎛ ⎞Ω
⎡ ⎤ ⎡ ⎤≈ + Ψ −Ω −Ω + Ω −Ω + Ψ −Ω + Ω + Ω + Ω⎜ ⎟ ⎣ ⎦ ⎣ ⎦

⎝ ⎠
, 

(3.48)

where 
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(3.49)

The resistivity of the R-card can now be found by using (3.14).  This expression is known 

as the first order approximation because it uses only the first order terms of the Maclaurin 

series for sine and cosine.    

 Exactly like the free-space case, if in addition to the first order terms the second 

order terms are retained, a more accurate approximate function can be derived.  

Expanding the denominator in (3.43) to second order terms produces 

( ) ( )
0 0

21
0 0

2 2
2 2 2 2 20

0 0 0 0

8

1 12 1 2 2 2 1
2 2

III III

meas III

III III

III z II III z II z II

Z ZS
e Z Z Y e Z Z Y

Y Z k j jZ Z ck Z k
c

γ γ

ωη

ω η τωη τ τ ωη τ

−+ −

±

≈
+ + −

⎛ ⎞ ⎛ ⎞≈ − ± + ± −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

(3.50)

Rearranging (3.50) and substituting in the equivalent expression for z IIk  (3.39) results in 
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(3.51)

Solving for rε  brings about the following approximate function 
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Once rε  has been obtained using (3.52), the resistivity of the R-card can be found by 

using (3.14).  Expression (3.52) is known as the second order approximation because it 

uses the second order terms from the Maclaurin series for sine and cosine. 

 By retaining higher order terms from the Maclaurin series for sine and cosine, a 

general Nth order waveguide approximation can be derived.  Once again, polynomial 

expressions involving rε  are the result.  Substituting the Maclaurin series for sine and 

cosine, (3.23), into (3.43) and (3.44) and simplifying produces 
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(3.54)

where 
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(3.55)

and z IIk  is 

2 2 24z II rk a f c
ac
π ε= − . 

(3.56)

The first order approximation, (3.48), is formed from a combination of the terms on the 

right hand side of (3.54) up until the first term in the first bracketed expression.  The 
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second order approximation, (3.52), is formed from a combination of the terms on the 

right hand side of (3.54) up until the first three terms in the first bracketed expression.  

The third order approximation is a combination of the terms on the right hand side of 

(3.54) up until the first term from the second bracketed expression: 
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(3.57)

This pattern continues indefinitely.  Once z IIk  has been found, (3.56) can be used to get 

rε , which is related to resistivity by (3.14). 

3.2.3 Thin Sheet Approximation. 

There are many similarities between the waveguide thin sheet approximation and 

the free-space thin sheet approximation.  Like the free-space thin sheet approximation, 

the fields in region II, (3.38), can be neglected since the R-card is assumed to be very 

thin.  Taking this into account, the expressions for the fields become 
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Enforcing (3.28) and (3.29) at 0=z  and the continuity of tangential fields at z =  

results in the following equations 
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Dividing each equation by IE+  and rearranging (3.59) into matrix form produces 
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(3.60)

where S21, the electric field in region IV divided by the forward traveling electric field in 

region I, equals 
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Inverting the matrix in (3.60), multiplying it by the known vector on the right hand side 

of the expression, and simplifying results in the following relation for 21
measS  

0
21

1 2

2meas e III

e

R Z ZS
R

=
Ψ + Ψ

, 
(3.62)

where 
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(3.63)

Solving (3.62) for the resistivity of the R-card results in the following expression 

21 2

0 21 12

meas

e meas
III

SR
Z Z S

Ψ
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− Ψ
. 

(3.64)

Expression (3.64) is the waveguide thin sheet approximation.  Just like the free-space thin 

sheet approximation, the waveguide version is slightly more accurate than the second 

order waveguide approximation. 

 The waveguide methods that were introduced take advantage of the sample fully 

filling the waveguide.  This certainly makes the math easier, but has the drawback that 

the R-card is being measured along its most diminutive dimension.  Since the R-card is so 

thin, its resistivity values are extremely sensitive and depend highly on accurate relative 

permittivity values for its support backing.  With no free-space measurements available 

to verify waveguide data, ensuring accurate resistivity values with just waveguide 

methods alone could be a problem.  If, however, the R-card sample is rotated 90 degrees 

in the holder and measured along its largest dimension, more stable resistivity values 

should result.  In the next section, an expression for the resistivity of an R-card will be 

derived with this waveguide geometry. 
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3.2.4 Vertical Mode Matching Technique. 

The method derived in this subsection will be the vertical mode matching 

technique.  In this technique a root search, similar to the ones introduced previously, will 

be used to solve for the relative permittivity of the R-card.  Similar work was done by 

Bogle [9] in his thesis, “Electromagnetic Material Characterization Using a Partially 

Filled Rectangular Waveguide.”  In his work, he derives a method for extracting the 

material parameters of a substance when it does not uniformly fill the waveguide holder.  

His derivation, however, assumes that the sample is placed exactly in the center of the 

waveguide holder.  In the derivation to follow, no such assumption will be made.  Figures 

3-5 and 3-6 show the geometry of the problem.  Since the sample being measured does 

not uniformly fill the waveguide, higher order TE modes, in addition to the 10TE  mode, 

will be generated.  These higher order modes will take the form of 0mTE  because the 

geometry shown Figures 3-5 and 3-6 has no variation in the y direction.  Equation (2.62) 

gives the general expression for the cut-off frequency.  Substituting in (2.14), making use 

of the expressions in (3.39), and noting that the fields generated in the waveguide will be 

0mTE  modes, (2.62) becomes 

,c m
m

a
πω
με

= . 
(3.65)

In this thesis, an X-band waveguide, 2.286 cma = , was used; therefore, the first two cut-

off frequencies corresponding to the first two modes generated in an air filled waveguide 

are 
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Figure 3-5.  Cross sectional view of the vertical mode matching technique. 

 
 

 

 
Figure 3-6.  View of the vertical mode matching technique looking down the waveguide. 
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(3.66)

The frequency range at which the R-cards were measured in the waveguide system was 

8.2 GHz to 12.4 GHz.  This means that only the 10TE  mode will propagate.  All other 
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modes generated by the non-uniformly filled sample will be highly evanescent and will 

not make it to the detector to be measured.  These modes however must be accounted for 

since they are generated from the power of the incident 10TE  mode and no power is added 

to the system.  To an observer not taking into account the existence of these modes, the 

forward transmission coefficient would appear to be lower in magnitude than it should 

be. 

The fields in region I and III of Figure 3-5 are of the same form as the uniformly 

filled fields shown in (3.38) with the exception that higher order modes are generated.  

Taking this into account, the fields in region I and III are of the form 
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(3.67)

In region II of Figure 3-5, there are three subregions.  Subregions 1 and 3 are the same 

material, but may not necessarily have the same physical dimension in the x direction.  

Subregion 2 is the unknown, non-magnetic R-card.  To get expressions for the fields in 

region II of Figure 3-5, the electric vector potential must be used.  Note that since each 

subregion of region II is different in some way, it will have its own electric vector 
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potential expression.  The expressions for the electric vector potentials of subregions 1, 2, 

and 3 are 

( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1

, , ,
,

2 2 2

, , ,
,

3 3 3

, , ,
,

cos sin

cos sin

cos sin

m m

m m

m m

z z
z m m x m m x m m m

x m

z zu
z m m xu m m xu m m m

xu m

z z
z m m x m m x m m m

x m

F E k x F k x B e B e
k

F E k x F k x B e B e
k

F E k a x F k a x B e B e
k

γ γ

γ γ

γ γ

ε

ε τ τ

ε

−+ −

−+ −

−+ −

⎡ ⎤= + +⎢ ⎥⎣ ⎦

⎡ ⎤= − + − +⎢ ⎥⎣ ⎦

⎡ ⎤= − + − +⎢ ⎥⎣ ⎦

. 

(3.68)

Constants were placed in front of the expressions in (3.68), which differ from the electric 

vector potential expression shown in (2.57), to simplify the expressions of the fields.  The 

wave numbers in the x direction in region II are unknown and are not equal to the xk  

shown in (3.39) or (3.67).  Since expressions for the electric vector potentials for 

subregions 1, 2, and 3 have been found, (2.48) can be used to find expressions for the 

fields in each subregion: 
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Applying the tangential electric field boundary conditions at the walls, 0x =  and x a= ,  

of the waveguide—that is, the tangential electric field at the surface of a PEC must be 

zero—results in 
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(3.70)

Enforcing the continuity of tangential fields at x τ=  and x dτ= + , produces the 

following expressions 
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(3.71)

Substituting the first two expression of (3.71) into the last two and then dividing the two 

resulting equations by each other, brings about 
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Simplifying (3.72) results in 
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(3.73)

Equation (3.73) is known as an eigenvalue equation.  Without further information, 

solving the eigenvalue equation is impossible since it contains two unknowns.  Realizing 

that both unknown x directed wave numbers must satisfy (2.25) and substituting in γ  for 

the z directed wave number, (3.73) becomes 
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(3.74)

Since the value of uε  is supplied as the initial guess to the root search routine, (3.74) is 

now an equation of one unknown, mγ .  Unfortunately, (3.74) cannot be solved directly 

for mγ  and another root search must be performed on (3.74) to obtain mγ .  Supplying 

initial guesses for mγ , which has a different value for each mode, can be tricky.  

However, the values of mγ  are known when the waveguide is either completely filled or 

completely empty.  Using those values as the initial guesses and solving (3.74) 

repeatedly, each solution becoming the next iterations initial guesses and incrementing 

the R-card’s thickness, d from merely a fraction of d to its actual value, produces the 

correct results for mγ .  Before the continuity of tangential fields can be enforced in the z 
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direction, the constants in (3.71) must be found.  Dividing each expression in (3.71) by 

1

mE  and simplifying results in  
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Plugging these expressions back into (3.69) produces the following expressions for the 

fields in region II 
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Now that complete expressions for the fields in region II have been found, the 

constants mA− , mB+ , mB− , and mC+  can be found by enforcing the continuity of tangential 
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fields at the z directed boundaries, 0z =  and z = .  Doing so, rolling the like constants 

into the z propagation coefficients in the fields expressions in regions I and III, and 

dividing each expression by 1A+  brings about equations of the following basic form 
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where 
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The forward transmission coefficient, S21, is found by dividing the 10TE  mode electric 

field expression in region III, since all other modes will evanesce before reaching the 

detector, by the forward traveling electric field expression in region I: 

0,1 0,1,10 1
21 1

1

III

I

E CS e e
E A

γ γ
+

+ += = = Τ . 
(3.79)

In (3.77), there are four equations and an infinite number of unknowns.  Even if the 

infinite summations were truncated to become finite summations, there would still be 

more unknowns than equations.  This however can be overcome by using testing 

operators.  A testing operator is basically an inner product, 
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where 1ψ  can be any function and 2ψ  in this problem would be equal to the sine and 

cosine expressions in (3.77).  Typically 1ψ  is chosen to be a function that is at least in 

part orthogonal to 2ψ  to ease the mathematics.  Letting  
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and performing the inner product with each term in (3.77) results in 
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and nmM , nmN , nmO , nmP , nmQ , and nmR  are 
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(details in Appendix A).  Assuming M modes are modeled and rearranging (3.82) into 

matrix form produces 
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where M , N , 1U , 2U , 3U , 1V ± , 2V , and 3V  are MxM submatrices and 1x  and 2x  are 

column vectors, 
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To get the values for Τ, which is related to S21 by (3.79), the inverse of the 4Mx4M 

matrix must be taken and then multiplied by the known column vector on the right hand 

side of (3.85).  Once a theoretical value of S21 has been obtained, it is compared to 

measured S21 data.  If the theoretical solution is within a certain precision of the measured 

data, then the relative permittivity of the R-card is returned.  If not, then a new value is 

iterated for the relative permittivity of the R-card and the whole process begins again 

with the mγ  root search, filling the matrix in (3.85), and solving for the theoretical value 

of S21. 

 
3.3 Summary 

In this chapter, free-space and waveguide techniques for obtaining the resistivity 

of an R-card were developed.  They ranged from the computationally complex vertical 

mode matching technique to simple functions, like the thin sheet approximations.  Each 



 3-35

technique has its own advantages and disadvantages.  In the next chapter, the techniques 

will be compared to each other with measured, R-card forward transmission data. 
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4. Results 
 
 

In the previous chapter, methods for determining the resistivity of an R-card were 

derived.  Those methods will be verified in this chapter.  Measurements of the 892 Ω/sq 

and 64 Ω/sq R-cards, Figure 1-1, were made with free-space and waveguide material 

measurement systems.  The R-cards were measured from 2 to 18 GHz using the free-

space, or focused arch, system and from 8.2 to 12.4 GHz, or X-band, using the 

waveguide system.  While there is nothing invalid mathematically with using the S21 

methods developed in the previous chapter at any frequency, the forward transmission 

data with which they depend may be too near the noise floor of the measurement system 

to be accurately obtained.  R-cards, as will be shown, are highly dependent upon 

frequency.  At some frequencies they are highly reflective, while at others they are more 

transparent.  The frequency ranges chosen to measure the 892 Ω/sq and 64 Ω/sq R-cards 

were selected so that S21 data was easily measured and for convenient proof of concept 

demonstrations. 

 
4.1 Experimental Setups 

Free-space measurements were made using AFRL/SNS’s focused arch system 

(Figure 4-1).  Since the size of the beam focused by the lenses increases with wavelength, 

the R-card samples, shown in Figure 4-2, were cut to 1 foot by 1 foot squares.  This 

ensured that at the lowest frequency measured (2 GHz), only the sample and none of the 

apparatus holding the sample was illuminated.  Two measurements were then made.  The 

first was a thru measurement—empty sample holder—to establish the system’s  
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Figure 4-1.  Focused arch material measurement system owned and operated by 
AFRL/SNS. 
 
 

 

 

Figure 4-2.  1 foot by 1 foot R-card samples.  On the left, is the 892 Ω/sq DC resistivity 
R-card.  On the right, is the 64 Ω/sq DC resistivity R-card. 
 
 

transmission response.  The second was a reflect measurement using a metal plate to 

establish the system’s isolation response.  The samples (Figure 4-2) were then measured 
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and the raw data was calibrated using the results from the thru and reflect measurements 

and the following expression 

21 21
21

21 21

raw reflect
cal

thru reflect

S SS
S S

−
=

−
 [10]. 

(4.1) 

After the R-card samples in Figure 4-2 were measured and the focused arch 

system was calibrated, the S21 data was software time gated.  Software time gating is a 

post process technique which removes unwanted returns from the system.  It is typically 

done in systems where it is not possible to perform full two port calibrations, like 

microstrip and free-space systems.  Time gating requires transforming frequency domain 

data into time domain data via an inverse Fourier transform.  Data in the time domain 

shows scattering from objects as they occur spatially; therefore, in a time domain image, 

it is quite easy to tell which scattering is due to the sample and which is due to unwanted 

phenomena, like cable connections in the system.  Once the return from the sample has 

been identified, it is kept and all other data is made zero.  The data is then transformed 

back into the frequency domain via a Fourier transform.  Software time gating 

significantly improves the quality of measured data; however, it has the unintended effect 

of making data at the lower and upper limits of the measured frequency range inaccurate.  

This undesirable effect occurs because of the abrupt change from measured data to zero 

introduced by the gate.  For more information on this phenomena see Cassell’s [11] 

thesis, “Investigation of Time-Domain and Frequency-Domain Free-Space Material 

Measurements.”  Since the frequency range of interest is from 7 to 14 GHz, this time 

gating effect has no impact on the results presented in this thesis.  R-card resistivity data 
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will be presented at 2 GHz and 18 GHz; however, it is only used for proof of concept 

demonstrations. 

 Waveguide measurements were made with the system shown in Figure 4-3.  The 

waveguide used was a WR90 waveguide, where WR stands for waveguide rectangular 

and 90 is the waveguide aperture width—0.90 inches.  The ends of the waveguide were 

connected to a HP8510C Vector Network Analyzer by coaxial cables.  The X-band 

sample holder and the R-card samples are shown in Figure 4-4. 

 Before gathering S21 data, the system was calibrated, including the sample holder, 

using a full two port, thru, reflect, line (TRL) calibration technique.  The TRL calibration 

makes three basic measurements.  The first is called the thru measurement and involves  

 

 
Figure 4-3.  X-band waveguide WR90 attached to HP8510C Vector Network Analyzer 
with coaxial cables. 
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Figure 4-4.  X-band waveguide sample holder and R-card samples.  The leftmost sample 
is the 892 Ω/sq DC resistivity R-card.  The rightmost sample is the 64 Ω/sq DC resistivity 
R-card.  The other material shown in the figure is acrylic, used as a support backing to 
the R-card samples. 
 
 

measuring the response of the system with the empty sample holder included.  The 

second is the reflect measurement and consists of measuring the response of the system 

when a short, or metal plate, is placed at one end of the waveguide.  The third and final 

measurement is called the line measurement and consists of measuring the response of 

the system without the sample holder.  These measurements are used to nullify returns 

from coax to waveguide couplers and waveguide segment to waveguide segment 

linkages.  After performing the TRL calibration, the forward reflection coefficient, S11, 

was measured with the short in place to ensure that 11 1 1 180S ≈ − ≈ ∠ ± ° .  This was done 

to verify that the calibration was successful. 
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4.2 892 Ω/sq R-card 

The 892 Ω/sq R-card measured in this thesis was a dark, opaque material.  It was 

extremely thin, approximately 0.001 inches, and had the consistency of tissue paper.  

Extreme care had to be taken when handling it because it was very easy to tear the 

material.  Figure 4-5 shows the VV relative permittivity of the material using the root 

search method derived from the focused arch system data.  Figure 4-6 shows the 

resistivity of the R-card using the relative permittivity shown in Figure 4-5 and applying 

(3.14).  These root search values, which are solutions to (3.11) with a 10-7 tolerance, will 

be used as a baseline to compare the accuracy of the other free-space methods.  Figures 

4-7 and 4-8 compare the root search relative permittivity and resistivity values with the 

first order and thin sheet approximations’ values.  The first order approximation’s success 

can be explained by looking at Figure 4-9, which shows the magnitude of the R-card’s 

wave number times its thickness.  Since kτ  is about 10 times less than 1, the first order 

approximation is extremely accurate.  The thin sheet approximation performs very 

similarly to the first order approximation.   Its accuracy depends upon the sheet thickness 

being much less than the wavelength of the incident field.  The wavelength of 

electromagnetic energy at 18 GHz is 0.6557 inches, which is 655 times larger than the 

thickness of the sheet.  The results are very similar for the HH case.  Table 4-1 

summarizes the results and shows average errors for the first, second, third, fifth, and 

tenth order approximations, as well as the average error for the thin sheet approximation.  

Figure 4-10 communicates the results shown in Table 4-1 pictorially. 
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Figure 4-5.  892 Ω/sq R-card, free-space, VV, relative permittivity using the root search 
method.  On the left is the real part of the relative permittivity.  On the right is the 
imaginary part of the relative permittivity.  Values are solutions to (3.11) with a 10-7 
tolerance. 
 
 
 
 
 
 
 
 

Figure 4-6.  892 Ω/sq R-card, free-space, VV, resistivity using the root search method.  
On the left is the real part of the resistivity.  On the right is the imaginary part of the 
resistivity.  Values are solutions to (3.11) with a 10-7 tolerance. 
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Figure 4-7.  892 Ω/sq R-card, free-space, VV, relative permittivity comparing the first 
order approximation and the thin sheet approximation to the root search method.  On the 
left is the real part of the relative permittivity.  On the right is the imaginary part of the 
relative permittivity. 
 
 
 
 
 
 
 
 
 

Figure 4-8.  892 Ω/sq R-card, free-space, VV, resistivity comparing the first order 
approximation and the thin sheet approximation to the root search method.  On the left is 
the real part of the resistivity.  On the right is the imaginary part of the resistivity. 
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Figure 4-9.  892 Ω/sq R-card, free-space, VV, kτ  values versus frequency. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-10.  892 Ω/sq R-card, free-space methods’ error magnitude versus frequency.  
On the left are the results for VV.  On the right are the results for HH. 
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Table 4-1.  892 Ω/sq R-card, free-space methods comparison summary. 
 

 VV Average 
Error Magnitude 

(Ω/sq) 

VV Max Error 
Frequency 

(GHz) 

HH Average 
Error Magnitude 

(Ω/sq) 

HH Max Error 
Frequency 

(GHz) 
Order 1 4.2315 18.0 4.1093 18.0 
Order 2 0.3563 18.0 0.3563 18.0 
Order 3 0.0013 18.0 0.0013 18.0 
Order 5 2.4683 x 10-7 18.0 2.8687 x 10-7 18.0 
Order 10 7.9883 x 10-8 17.98 1.1335 x 10-7 18.0 

Thin Sheet 0.3510 18.0 0.3510 18.0 
  

Comparing the values returned from the waveguide root search to that of the 

waveguide first order and thin sheet approximations produces conclusions similar to that 

of the free-space methods comparison.  The real point of interest is when the results from 

the fully filled waveguide techniques are compared to the 8.2 GHz to 12.4 GHz 

frequency range of the free-space techniques.  Since all the approximations eventually 

converge to the root search method, it will be the only technique whose results are 

compared across material measurement apparatuses.  Figure 4-11 shows the 892 Ω/sq R-

card’s relative permittivity, real and imaginary, obtained by using the free-space root 

search method compared to the relative permittivity returned by the waveguide root 

search method.  Note that there is a significant disagreement between the two 

measurement systems, especially when it comes to the real part of the dielectric constant.  

Two possible causes are that the R-card is inhomogeneous and its permittivity depends 

on the polarization of the incident field or the dielectric constant of the R-card’s acrylic 

support backing used in the waveguide experiments is not accurate.  Since VV and HH 

free-space experiments produce similar relative permittivity values for the 892 Ω/sq R-

card, the former cause does not seem likely in this case.  This leaves the latter.  Figure 4-
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12 shows the relative permittivity of the acrylic support backing measured in the X-band 

waveguide.  Its permittivity values differ by 1.02 % around the mean 

( 2.7479 0.0160r jε = − ), which was the value used for acrylic in the waveguide root 

search method shown in Figure 4-11.  Figure 4-13 shows the impact that changing the 

acrylic’s permittivity to any value within the range shown in Figure 4-12 has on the 

values returned for the 892 Ω/sq R-card’s relative permittivity by the waveguide root 

search method.  Note the profound effect that changing the acrylic’s permittivity value by 

only approximately 0.5 % has on the R-card’s permittivity values.  To accurately 

reproduce the free-space root search values with the waveguide root search requires an 

acrylic relative permittivity value of 2.81 0.0r jε = − , which is only about 2 % away 

from the mean acrylic value.  This 2 % can easily be accounted for by any number of 

possible measurement errors, for instance the acrylic sample not fully filling the 

waveguide or imperfections in the surface of the material such as scratches or nicks. 
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Figure 4-11.  892 Ω/sq R-card relative permittivity, free-space root search compared to 
the waveguide root search.  On the left is the real part of the relative permittivity.  On the 
right is the imaginary part of the relative permittivity. 
 
 

 

 

 

Figure 4-12.  X-band relative permittivity of acrylic obtained by the waveguide root 
search method.  On the left is the real part of the relative permittivity.  On the right is the 
imaginary part of the relative permittivity. 
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Figure 4-13.  892 Ω/sq R-card relative permittivity values obtained by the waveguide root 
search method when the acrylic support backing is any value within the range of Figure 
4-12.  On the left is the real part of the relative permittivity.  On the right is the imaginary 
part of the relative permittivity. 
 
 

 To verify the vertical mode matching technique, the 892 Ω/sq R-card was 

sandwiched between two pieces of polystyrene foam as shown in Figures 3-5 and 3-6.  

The permittivity of foam was measured independently and is shown in Figure 4-14.  The 

results of the vertical mode matching technique for the 892 Ω/sq R-card are shown in 

Figure 4-15 (1, 5, and 10 modes).  The results are disappointing in terms of accuracy, 

especially for the real part of the dielectric constant; however, they are encouraging in 

terms of consistency.  Figure 4-16 shows the variation in the values of the 892 Ω/sq R-

card if any value in the range of Figure 4-14 is used as foam’s permittivity in the vertical 

mode matching algorithm.  It was hoped that measuring the R-card along its length, 

rather than its thickness, would produce more consistent results and it appears it has.  

Even with more variance in the value of its support backing—foam 1.23 % versus acrylic 

1.02 %—the method produces more consistent results than the fully filled waveguide root 

search routine shown in Figure 4-13. 



 4-14

 A major drawback of this method, especially for measuring the permittivity of a 

thin material which cannot support itself, is in the difficulty of machining the sample.  In 

the fully filled waveguide methods, one sample at a time can be fabricated.  While in the 

vertical mode matching technique a sample “sandwich” has to be made.  Using the 

nomenclature in Figure 3-5, the values for permittivity are pretty resistant to inaccuracies 

in the measurement of τ  as shown in Figure 4-17.  However, inaccuracies in the 

measurement of  are costly (Figure 4-18).  Measuring  accurately is not a problem for 

rigid substances like acrylic or even the R-cards; on the other hand, an accurate  

measurement is nearly impossible for a substance like polystyrene foam.  Using a 

substance like acrylic for the sample sandwich, which was not available for this 

experiment, would certainly reduce the variability of the results. 
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Figure 4-14.  X-band relative permittivity of polystyrene foam obtained by the waveguide 
root search method.  On the left is the real part of the relative permittivity.  On the right is 
the imaginary part of the relative permittivity. 
 
 

 

 

Figure 4-15.  892 Ω/sq R-card relative permittivity using 1, 5, and 10 modes of the 
vertical mode matching technique.  On the left is the real part of the relative permittivity.  
On the right is the imaginary part of the relative permittivity.  Values are solutions to 
(3.11) with a 10-7 tolerance. 
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Figure 4-16.  892 Ω/sq R-card relative permittivity values obtained by the vertical mode 
matching technique, 5 modes, when the foam sandwich is any value within the range of 
Figure 4-14.  On the left is the real part of the relative permittivity.  On the right is the 
imaginary part of the relative permittivity. 
 
 

 

Figure 4-17.  892 Ω/sq R-card relative permittivity values obtained by the vertical mode 
matching technique, 5 modes, when the value of τ  is changed by ± 10 %.  On the left is 
the real part of the relative permittivity.  On the right is the imaginary part of the relative 
permittivity. 
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Figure 4-18.  892 Ω/sq R-card relative permittivity values obtained by the vertical mode 
matching technique, 5 modes, when the value of  is changed by ± 10 %.  On the left is 
the real part of the relative permittivity.  On the right is the imaginary part of the relative 
permittivity. 
 
 
 
4.3 64 Ω/sq R-card 

Like the 892 Ω/sq R-card, the 64 Ω/sq R-card was a dark, opaque material.  It 

however was 30 times thicker than the 892 Ω/sq R-card, approximately 0.030 inches, and 

had a rubber-like consistency.  Figures 4-19 and 4-20 show the R-card’s relative 

permittivity and resistivity respectively using the root search method.  The results shown 

in Figures 4-19 and 4-20, solutions to (3.11) with a 10-7 tolerance, will be used as a 

baseline to compare all the other free-space methods.  Figures 4-21 and 4-22 show the 

first, second, third, and fifth order approximations, as well as the thin sheet 

approximation, compared to the root search method.  Note that it takes fifth order terms 

of the Maclaurin series for sine and cosine to converge on the true values.  Figure 4-23 

shows the magnitude of the R-card’s wave number times its thickness versus frequency.  

The plot shows that kτ  at a minimum is equal to approximately 0.5, which is only 2 
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times less than 1.  This explains why the first order and second order approximations are 

not accurate.  The thin sheet approximation also returns erroneous values.  Its accuracy 

depends upon the thickness of the sheet being much less than the wavelength of the 

incident field so that the fields induced inside the R-card are negligible.  The longest and 

shortest measured wavelengths are at 2 GHz and 18 GHz—5.9015 inches and 0.6557 

inches.  This explains why the thin sheet approximation’s accuracy decreases as 

frequency increases, or wavelength shortens.  At the lowest frequency, the wavelength is 

197 times larger than the thickness of the R-card.  At 18 GHz, the wavelength is only 22 

times larger than the thickness of the R-card, as opposed to 655 times larger in the 892 

Ω/sq R-card case.  Table 4-2 summarizes the results and shows average errors for the 

first, second, third, fifth, and tenth order approximations, as well as the average error for 

the thin sheet approximation.  Figure 4-24 communicates the results shown in Table 4-2 

pictorially. 
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Figure 4-19.  64 Ω/sq R-card, free-space, VV, relative permittivity using the root search 
method.  On the left is the real part of the relative permittivity.  On the right is the 
imaginary part of the relative permittivity.  Values are solutions to (3.11) with a 10-7 
tolerance. 
 
 
 
 
 
 
 
 

Figure 4-20.  64 Ω/sq R-card, free-space, VV, resistivity using the root search method.  
On the left is the real part of the resistivity.  On the right is the imaginary part of the 
resistivity.  Values are solutions to (3.11) with a 10-7 tolerance. 
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Figure 4-21.  64 Ω/sq R-card, free-space, VV, relative permittivity comparing the first, 
second, third, and fifth order approximations, as well as the thin sheet approximation, to 
the root search method.  On the left is the real part of the relative permittivity.  On the 
right is the imaginary part of the relative permittivity. 
 
 
 
 
 

Figure 4-22.  64 Ω/sq R-card, free-space, VV, resistivity comparing the first, second, 
third, and fifth order approximations, as well as the thin sheet approximation, to the root 
search method.  On the left is the real part of the resistivity.  On the right is the imaginary 
part of the resisitivity. 
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Figure 4-23.  64 Ω/sq R-card, free-space, VV, kτ  values versus frequency. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-24.  64 Ω/sq R-card, free-space methods’ error magnitude versus frequency.  On 
the left are the results for VV.  On the right are the results for HH. 
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Table 4-2.  64 Ω/sq R-card, free-space methods comparison summary. 
 

 VV Average 
Error Magnitude 

(Ω/sq) 

VV Max Error 
Frequency 

(GHz) 

HH Average 
Error Magnitude 

(Ω/sq) 

HH Max Error 
Frequency 

(GHz) 
Order 1 18.0952 18.0 16.1680 18.0 
Order 2 11.2984 18.0 10.8126 18.0 
Order 3 1.9221 18.0 1.9091 18.0 
Order 5 0.1270 18.0 0.1498 18.0 
Order 10 3.6422 x 10-5 18.0 6.5499 x 10-5 18.0 

Thin Sheet 10.7447 18.0 10.4571 18.0 
 

 When comparing methods intra-measurement systems, the fully filled waveguide 

techniques produce very similar results to the free-space methods.  Like the 892 Ω/sq R-

card, the real point of interest is when the methods are compared inter-measurement 

systems.  Once again, since all other methods converge to values obtained by root 

searches, only comparisons of the free-space root search and waveguide root search 

methods will be shown.  Figure 4-25 shows the 64 Ω/sq R-card’s relative permittivity 

values obtained by free-space S21 measurement compared to those obtained by waveguide 

S21 measurement.  The discrepancy between the two is far less pronounced than in the 

892 Ω/sq R-card case; however, it is still significant.  The likely causes are the same as 

the 892 Ω/sq R-card case: the R-card is inhomogeneous or the permittivity value for the 

acrylic support backing is inaccurate.  In this case, the former cause cannot be so easily 

dismissed.  Figure 4-26 shows the VV and HH relative permittivity values of the 64 Ω/sq 

R-card as measured by the focused arch system.  From Figure 4-26, it is clear that there is 

a significant dependence of the 64 Ω/sq R-card’s relative permittivity on polarization, 

especially the imaginary part of relative permittivity.  Therefore, it is entirely plausible to 

receive different results for relative permittivity when comparing values obtained from 
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measuring the 64 Ω/sq R-card with a TEM mode to those obtained when measuring the 

64 Ω/sq R-card with a 10TE  mode.  In addition to the former cause, the latter—inaccurate 

value for permittivity of acrylic—can also be a source of the difference in Figure 4-25.  A 

small change in acrylic’s permittivity, however, does not have nearly as drastic an effect 

on the relative permittivity value of the 64 Ω/sq R-card as it did on the 892 Ω/sq R-card.  

Figure 4-27 shows the relative permittivity of the 64 Ω/sq R-card when any value in 

Figure 4-12 is used for the permittivity of acrylic in the waveguide root search algorithm.  

Note that there is only a slight change in the relative permittivity of the 64 Ω/sq R-card.  

Since it is 30 times thicker than the 892 Ω/sq R-card, its relative permittivity is much less 

vulnerable to the value entered as the permittivity of acrylic in the root search algorithm.  

An electrically thicker sample makes phase shifts caused by that sample easier to 

measure.  Since the shift a material puts on the phase of the scattered field is linked to the 

material’s reactive properties, which in turn are linked to the real part of the material’s 

permittivity, the discrepancy shown in Figure 4-25 is much less of a discrepancy than the 

one shown in Figure 4-11. 
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Figure 4-25.  64 Ω/sq R-card relative permittivity, free-space root search compared to the 
waveguide root search.  On the left is the real part of the relative permittivity.  On the 
right is the imaginary part of the relative permittivity. 
 
 

 

 

Figure 4-26.  64 Ω/sq R-card, free-space, VV and HH, relative permittivity using the 
free-space root search method.  On the left is the real part of the relative permittivity.  On 
the right is the imaginary part of the relative permittivity.  Values are solutions to (3.11) 
with a 10-7 tolerance. 
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Figure 4-27.  64 Ω/sq R-card relative permittivity values obtained by the waveguide root 
search method when the acrylic support backing is any value within the range of Figure 
4-12.  On the left is the real part of the relative permittivity.  On the right is the imaginary 
part of the relative permittivity. 
 
 

 The results for the 64 Ω/sq R-card using the vertical mode matching technique are 

very similar to those of the 892 Ω/sq R-card.  Like the 892 Ω/sq R-card, layers 1 and 3 of 

Figures 3-5 and 3-6 were polystyrene foam (Figure 4-14).  Figure 4-28 shows the results 

for the 64 Ω/sq R-card using 5, 10, and 15 modes of the vertical mode matching 

technique.  This time the method produces much more accurate results for both the real 

and imaginary parts of the dielectric constant.  The method also continues to demonstrate 

its stability to changes in the permittivity of foam entered in the algorithm (Figure 4-29). 

 Although the results are better for this R-card, the difficulty with the vertical 

mode matching technique lies in machining the sample.  Using a material that can be 

compacted like foam helps with the sandwich; however, it makes it much harder to get 

accurate values for τ  and  (Figure 3-5).  The good news is that like the 892 Ω/sq R-

card, the results for the 64 Ω/sq R-card are pretty resistant to inaccuracies in the 

measurement of τ  as shown in Figure 4-30.  However, the same is not true for , shown 
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in Figure 4-31.  Using a substance like acrylic for the sandwich would make it much 

easier to accurately measure τ  and , which as a result would make the returned 

permittivity values more accurate.  However, the sandwich would have to be machined 

very precisely to fully fill the waveguide (Figure 3-6). 
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Figure 4-28.  64 Ω/sq R-card relative permittivity using 5, 10, and 15 modes of the 
vertical mode matching technique.  On the left is the real part of the relative permittivity.  
On the right is the imaginary part of the relative permittivity.  Values are solutions to 
(3.11) with a 10-7 tolerance. 
 
 
 
 
 
 

Figure 4-29.  64 Ω/sq R-card relative permittivity values obtained by the vertical mode 
matching technique, 10 modes, when the foam sandwich is any value within the range of 
Figure 4-14.  On the left is the real part of the relative permittivity.  On the right is the 
imaginary part of the relative permittivity. 
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Figure 4-30.  64 Ω/sq R-card relative permittivity values obtained by the vertical mode 
matching technique, 10 modes, when the value of τ  is changed by ± 10 %.  On the left is 
the real part of the relative permittivity.  On the right is the imaginary part of the relative 
permittivity. 
 
 

 

Figure 4-31.  64 Ω/sq R-card relative permittivity values obtained by the vertical mode 
matching technique, 10 modes, when the value of  is changed by ± 10 %.  On the left is 
the real part of the relative permittivity.  On the right is the imaginary part of the relative 
permittivity. 
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4.4 Summary 

When compared intra-measurement system, the Nth order and thin sheet 

approximations performed as expected.  The 892 Ω/sq R-card required at most only two 

orders to accurately converge on the solution; whereas, the 64 Ω/sq R-card, being 30 

times thicker, required at least 5 orders to be accurate.  When free-space data was 

compared to waveguide data, significant differences were discovered.  It turned out that 

the waveguide results for the 892 Ω/sq R-card were highly dependent on the permittivity 

value entered for the acrylic support backing.  Only a 0.5 % error in the permittivity of 

acrylic had a drastic impact on what the fully filled waveguide methods returned for the 

R-card’s permittivity.  The 64 Ω/sq R-card faired better in that regard; however, it did 

appear to be inhomogeneous.  The vertical mode matching technique’s results for the 892 

Ω/sq R-card were fair.  It produced accurate results for the R-card’s loss factor 

(imaginary permittivity) and delivered values that were less vulnerable to the permittivity 

entered for the foam sandwich; however, it was unable to accurately determine the R-

card’s real dielectric constant.  The vertical mode matching technique’s results for the 64 

Ω/sq R-card were better than the 892 Ω/sq R-card’s.  It produced accurate values for the 

64 Ω/sq R-card’s dielectric constant, real and imaginary.  It also demonstrated the same 

stability to small changes in the value entered as the permittivity of the foam sandwich. 
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5. Conclusions and Recommendations 
 

The problem investigated in this thesis was how to accurately determine an R-

card’s resistivity so that it can then be used to theoretically predict the scattering from an 

object utilizing an R-card.  It was found that relying on a DC resistivity value provided 

by a four-point probe is not sufficient and material measurement techniques must be 

utilized to accurately account for frequency dependent reactive properties that exists in R-

cards.  The methods developed in chapter 3 and demonstrated in chapter 4 do exactly 

that.  Each technique has its own strengths and weaknesses which must be taken into 

account when applying them. 

In chapter 1 it was revealed that research into scattering prediction regarding R-

cards was the impetus for this thesis, especially an RCS measurement made of the 892 

Ω/sq R-card wrapped around a polystyrene foam cylinder (Figure 1-2).  Using the results 

from free-space measurements presented in chapter 4, Figure 1-2 becomes Figure 5-1.  It 

is evident from the figure that accounting for the R-card’s reactive properties made all the 

difference. 
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Figure 5-1.  Vertical and horizontal polarization monostatic RCS plots of the 892 Ω/sq R-
card.  The RCS was predicted and measured at 7 GHz.  In both polarizations, the 
theoretical RCS is within 0.5 dBsm of the measured RCS.  Experience has shown a ±0.5 
dBsm uncertainty in the RCS values obtained from the AFIT range. 
 
 

5.1 Future Research 

In regards to R-cards, one of the most interesting problems that has yet to be 

investigated is the flanged waveguide problem.  In this problem an R-card is clamped 

between two waveguides that are flanged as shown in Figure 5-2.  The solution of the 

problem involves solving two coupled magnetic field integral equations.  A theoretical 

development of this problem would be of real benefit because of the simplicity of the 

actual measurement.  The only requirement on the R-card sample is that it is as large as 

the flanges. 

 Other research, not necessary involving R-cards, relate to the vertical mode 

matching technique.  It may be possible with the aid of a horizontal mode matching 

technique—sample lies parallel to x—to obtain two independent S21 measurements to  
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Figure 5-2.  Geometry of the flanged waveguide problem. 

 
 

fully characterize the permittivity and permeability of an MRAM (magnetic radar 

absorbing material) sample.  Also, certain exotic substances require three independent 

measurements to determine their permittivity.  It may be possible to fulfill this 

requirement by making a fully filled, vertical mode matching, and horizontal mode 

matching S21 measurement. 
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Appendix A. Integral Proofs 

 

This appendix contains proofs for the integral relations shown in (3.84). 
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Appendix B. Matlab Code 
 

This appendix contains the Matlab® code used to analyze measured data. 

B.1 Free-Space 

B.1.1 Root Search Method. 

function [parameters] = Newton1DSearchFS(permi, thick, maxGuess, precision) 
% 
% [parameters] = Newton1DSearchFS(permi, thick, maxGuess, precision) 
%  
% Newton1DSearchFS returns the relative permittivity and resistance of an 
%   unknown material layer 
%   SPECIFICALLY WRITTEN FOR FREE-SPACE MEASUREMENTS 
%   1D ROOT SEARCH - RELATIVE PERMEABILITY ASSUMED TO BE FREE-SPACE 
%   ASSUMES MEASURED SYSTEM DATA IS NAMED: 
%     s21sample.txt 
%      
% ------------------------ 
%       |         |  
%   Air | Layer   | Air  
%       |         |  
% ------------------------ 
%       |- thick -|  
% 
% permi = permittivity value of the layer shown in the diagram 
%   THE VALUE FOR THE UNKNOWN LAYER WILL BE THE INITIAL GUESS 
% thick = thickness of the layer shown in the diagram in METERS 
% maxGuess = maximum number of root search iterations 
% precision = precision of root 
 
% close all; 
clc; 
 
%%%%%%%%%%%%%%%%%%%%%%%% Measured Data Filenames %%%%%%%%%%%%%%%%%%%% 
load s21sample.txt; 
freq = s21sample(:,1)*1e9; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% S21_exp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21samplea = s21sample(:,2); 
s21sampleb = s21sample(:,3); 
s21samplesys = complex(s21samplea,s21sampleb); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
u0 = 4*pi*10^-7; 
e0 = 8.854e-12; 
c = 1/sqrt(e0*u0); 
 
w = 2*pi*freq; 
k0 = w/c; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21sys_exp = s21samplesys.*exp(-j*k0*thick); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% 1D Newton Root Search %%%%%%%%%%%%%%%%%%%%%% 
permi(1:length(freq)) = permi; 
for counFreq=1:length(freq) 
    prog_str = ['Processing frequency ' num2str(counFreq) ' of ' ... 
            num2str(length(freq)) ' ...']; 
    disp(prog_str); 
    guesses = 1; 
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%%%%%%%%%%%%%%%%%%%%%%%% S21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                     
    while guesses <= maxGuess 
        del_e_r = precision*permi(counFreq); 
        R1 = (sqrt(u0/(e0*permi(counFreq))) - sqrt(u0/e0))/ ... 
            (sqrt(u0/(e0*permi(counFreq))) + sqrt(u0/e0)); 
        R2 = -R1; 
        T1 = 1+R1; 
        T2 = 1+R2; 
        A = 1/(T1*T2)*[exp(j*k0(counFreq)*sqrt(permi(counFreq))*thick) ... 
                R1*exp(-j*k0(counFreq)*sqrt(permi(counFreq))*thick); ... 
                R1*exp(j*k0(counFreq)*sqrt(permi(counFreq))*thick) ... 
                exp(-j*k0(counFreq)*sqrt(permi(counFreq))*thick)] ... 
            *[1 R2;R2 1]; 
        s21sys_thy = 1/A(1,1);    
        R1 = (sqrt(u0/(e0*(permi(counFreq)+del_e_r))) - sqrt(u0/e0))/ ... 
            (sqrt(u0/(e0*(permi(counFreq)+del_e_r))) + sqrt(u0/e0)); 
        R2 = -R1; 
        T1 = 1+R1; 
        T2 = 1+R2; 
        A = 1/(T1*T2)*[exp(j*k0(counFreq)*sqrt(permi(counFreq)+del_e_r)*thick) ... 
                R1*exp(-j*k0(counFreq)*sqrt(permi(counFreq)+del_e_r)*thick); ... 
                R1*exp(j*k0(counFreq)*sqrt(permi(counFreq)+del_e_r)*thick) ... 
                exp(-j*k0(counFreq)*sqrt(permi(counFreq)+del_e_r)*thick)] ... 
            *[1 R2;R2 1];             
        s21sys_thy_d = (1/A(1,1)-s21sys_thy)/del_e_r; 
        if abs((s21sys_thy-s21sys_exp(counFreq))/s21sys_thy_d) <= precision 
            break; 
        end 
        permi(counFreq) = permi(counFreq) - ... 
            (s21sys_thy-s21sys_exp(counFreq))/s21sys_thy_d; 
        guesses = guesses + 1;                      
    end     
end 
permi = permi.'; 
R = -j*sqrt(u0/e0)./(k0*thick.*(permi-1)); 
parameters = [permi R]; 
DispResults(parameters, freq); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         
function DispResults(parameters, freq) 
e_r = parameters(:,1); 
R = parameters(:,2); 
title_str = 'S_2_1^S^Y^S^,^T^H^Y(\epsilon_r,\omega) - S_2_1^S^Y^S^,^E^X^P(\omega) = 0'; 
figure; 
subplot(221); 
plot(freq/1e9,real(e_r),'linewidth',2);         
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(223); 
plot(freq/1e9,imag(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(222); 
plot(freq/1e9,real(R),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of R','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(224); 
plot(freq/1e9,imag(R),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
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ylabel('Imaginary Part of R','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
end 
 
 

B.1.2 Nth Order Approximation. 

function R = OrderApproxFS(order, thick) 
% 
% R = OrderApproxFS(order, thick) 
%  
% OrderApprox returns the relative permittivity and resistivity of a sample 
%   using an Nth order Maclaurin series approximation 
%   SPECIFICALLY WRITTEN FOR FREE-SPACE MEASUREMENTS 
%   ASSUMES MEASURED SYSTEM DATA IS NAMED: 
%     s21sample.txt 
%      
% ------------------------ 
%       |         |  
%   Air | Layer   | Air  
%       |         |  
% ------------------------ 
%       |- thick -|  
% 
% order = degree of Maclaurin polynomial retained to formulate 
%   approximation 
% thick = thickness of the layer shown in the diagram in METERS 
 
% close all; 
clc; 
 
%%%%%%%%%%%%%%%%%%%%%%%% Measured Data Filenames %%%%%%%%%%%%%%%%%%%% 
load s21sample.txt; 
freq = s21sample(:,1)*1e9; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% S21_exp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21samplea = s21sample(:,2); 
s21sampleb = s21sample(:,3); 
s21samplesys = complex(s21samplea,s21sampleb); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
u0 = 4*pi*10^-7; 
e0 = 8.854e-12; 
N0 = sqrt(u0/e0); 
c = 1/sqrt(e0*u0); 
w = 2*pi*freq; 
k0 = w/c; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21sys_exp = s21samplesys.*exp(-j*k0*thick); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Nth Order Approx %%%%%%%%%%%%%%%%%%%%%%%%%%% 
p(:,1) = -2./s21sys_exp+2+j*w*thick/c; 
if mod(order,2) ~= 0 
    m = floor(order/2) + 1; 
    for i = 1:m 
        if i == m 
            p(:,i+1) = j*(-1)^(m-1)/factorial(2*m-1)*(w*thick/c).^(2*m-1); 
        else 
            p(:,i+1) = j*(-1)^(i-1)/factorial(2*i-1)*(w*thick/c).^(2*i-1) ... 
                + 2*(-1)^(i)/factorial(2*i)*(w*thick/c).^(2*i) ... 
                + j*(-1)^(i)/factorial(2*i+1)*(w*thick/c).^(2*i+1); 
        end 
    end 
    p = fliplr(p); 
    for i=1:length(p(:,1)) 
        tmpe_r(i,:) = roots(p(i,:)).'; 
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    end 
    for i=1:length(tmpe_r(:,1)) 
        for n=1:length(tmpe_r(i,:)) 
            if imag(tmpe_r(i,n)) <= 0 
                e_r(i,1) = tmpe_r(i,n); 
            end 
        end 
    end             
else 
    m = order/2; 
    for i = 1:m 
        if i == m 
            p(:,i+1) = j*(-1)^(m-1)/factorial(2*m-1)*(w*thick/c).^(2*m-1) ... 
                + 2*(-1)^(m)/factorial(2*m)*(w*thick/c).^(2*m); 
        else 
            p(:,i+1) = j*(-1)^(i-1)/factorial(2*i-1)*(w*thick/c).^(2*i-1) ... 
                + 2*(-1)^(i)/factorial(2*i)*(w*thick/c).^(2*i) ... 
                + j*(-1)^(i)/factorial(2*i+1)*(w*thick/c).^(2*i+1); 
        end 
    end 
    p = fliplr(p); 
    for i=1:length(p(:,1)) 
        tmpe_r(i,:) = roots(p(i,:)).'; 
    end 
    for i=1:length(tmpe_r(:,1)) 
        for n=1:length(tmpe_r(i,:)) 
            if imag(tmpe_r(i,n)) <= 0 
                e_r(i,1) = tmpe_r(i,n); 
            end 
        end 
    end             
end     
Re = -j*N0./(k0*thick.*(e_r-1)); 
title_str = ['Order ' num2str(order) ' Maclaurin Approximation - Free-Space']; 
R = [e_r, Re]; 
figure; 
subplot(221); 
plot(freq/1e9,real(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(223); 
plot(freq/1e9,imag(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(222); 
plot(freq/1e9,real(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(224); 
plot(freq/1e9,imag(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
end 
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B.1.3 Thin Sheet Approximation. 

function R = ResistiveFS(thick) 
% 
% R = ResistiveFS(thick) 
%  
% ResistiveFS returns the relative permittivity and resistivity of a sample 
%   using resistive boundary conditions  
%   SPECIFICALLY WRITTEN FOR FREE-SPACE MEASUREMENTS 
%   ASSUMES MEASURED SYSTEM DATA IS NAMED: 
%     s21sample.txt 
%      
% ------------------------ 
%       |         |  
%   Air | Layer   | Air  
%       |         |  
% ------------------------ 
%       |- thick -|  
% 
% thick = thickness of the layer shown in the diagram in METERS 
 
% close all; 
clc; 
 
%%%%%%%%%%%%%%%%%%%%%%%% Measured Data Filenames %%%%%%%%%%%%%%%%%%%% 
load s21sample.txt; 
freq = s21sample(:,1)*1e9; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% S21_exp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21samplea = s21sample(:,2); 
s21sampleb = s21sample(:,3); 
s21samplesys = complex(s21samplea,s21sampleb); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
u0 = 4*pi*10^-7; 
e0 = 8.854e-12; 
N0 = sqrt(u0/e0); 
c = 1/sqrt(e0*u0); 
w = 2*pi*freq; 
k0 = w/c; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21sys_exp = s21samplesys; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Thin Sheet Approx %%%%%%%%%%%%%%%%%%%%%%%%%% 
Re = s21sys_exp*N0./(2 - 2*s21sys_exp); 
e_r = (-j*N0 + Re.*k0*thick)./(Re.*k0*thick); 
R = [e_r, Re]; 
figure; 
subplot(221); 
plot(freq/1e9,real(e_r),'linewidth',2); 
title_str = 'Resistive Boundary Condition - Free-Space'; 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(223); 
plot(freq/1e9,imag(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(222); 
plot(freq/1e9,real(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
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ylabel('Real Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(224); 
plot(freq/1e9,imag(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
end 

 

B.2 Waveguide 

B.2.1 Root Search Method. 

function [parameters] = Newton1DSearchWG(numLayers, unkLayer, ... 
    permi_vec, perme_vec, thick_vec, a, maxGuess, precision) 
% 
% [parameters] = Newton1DSearchWG(numLayers, unkLayer, ... 
%   permi_vec, perme_vec, thick_vec, a, maxGuess, precision) 
%  
% Newton1D2DSearchWG returns the relative permittivity and permeability of an 
%   unknown material layer in a stack of known layers. 
%   SPECIFICALLY WRITTEN FOR WAVEGUIDE MEASUREMENTS 
%   ASSUMES MEASURED SYSTEM DATA IS NAMED: 
%     s21sample.txt 
%      
% ------------------------------------------------------------------------- 
%       |         |         |     |         |     |         | 
%       |         |         |     |         |     |         | 
%       |         |         |     |         |     |         | 
%   Air | Layer 1 | Layer 2 | ... | Layer n | ... | Layer N | Air  
%       |         |         |     |         |     |         | 
%       |         |         |     |         |     |         | 
%       |         |         |     |         |     |         | 
%       |         |         |     |         |     |         | 
% ------------------------------------------------------------------------- 
%       |-thick 1-|-thick 2-|     |-thick n-|     |-thick N-|  
% 
% numLayers = number of layers including unknown layer 
% unkLayer = layer number of the unknown material 
% permi_vec = a vector of the permittivity values of the layers in the 
%   order shown in the diagram 
%   THE VALUE FOR THE UNKNOWN LAYER WILL BE THE INITIAL GUESS 
% perme_vec = a vector of the permeability values of the layers in the 
%   order shown in the diagram 
%   THE VALUE ENTERED FOR THE UNKNOWN LAYER WILL BE 
%     ASSUMED TO BE TRUE 
% thick_vec = a vector of the thicknesses of the layers in the order shown 
%   in the diagram in METERS 
% a = longest dimension of the rectangular waveguide in METERS 
% maxGuess = maximum number of root search iterations 
% precision = precision of root 
 
% close all; 
clc; 
warning off all; 
 
%%%%%%%%%%%%%%%%%%%%%%%% Measured Data Filenames %%%%%%%%%%%%%%%%%%%% 
load s21sample.txt; 
 
freq = s21sample(:,3); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% S21_exp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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s21samplea = s21sample(:,1); 
s21sampleb = s21sample(:,2); 
s21samplesys = complex(s21samplea,s21sampleb); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% System Length %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
d_system = sum(thick_vec); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
u0 = 4*pi*10^-7; 
e0 = 8.854e-12; 
c = 1/sqrt(e0*u0); 
 
w = 2*pi*freq; 
ko = w/c;                           
kc = pi/a; 
kz = sqrt(ko.^2-kc^2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21sys_exp = s21samplesys.*exp(-j*kz*d_system); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% 1D Newton Root Search %%%%%%%%%%%%%%%%%%%%%% 
permi_vec = repmat(permi_vec,length(freq),1); 
perme_vec = repmat(perme_vec,length(freq),1); 
for counFreq=1:length(freq) 
    prog_str = ['Processing frequency ' num2str(counFreq) ' of ' ... 
            num2str(length(freq)) ' ...']; 
    disp(prog_str); 
    guesses = 1; 
%%%%%%%%%%%%%%%%%%%%%%%% S21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                     
    while guesses < maxGuess 
        del_e_r = precision*permi_vec(counFreq, unkLayer); 
        A = A_Matrix_Total(numLayers, unkLayer, kc, ko, permi_vec, ... 
            perme_vec, thick_vec, w, counFreq, 1, 0, 0); 
        s21sys_thy = 1/A(1,1);      
        A = A_Matrix_Total(numLayers, unkLayer, kc, ko, permi_vec, ... 
            perme_vec, thick_vec, w, counFreq, 2, del_e_r, 0); 
        s21sys_thy_d = (1/A(1,1)-s21sys_thy)/del_e_r; 
        if abs((s21sys_thy-s21sys_exp(counFreq))/s21sys_thy_d) <= precision 
            break; 
        end 
        permi_vec(counFreq,unkLayer) = permi_vec(counFreq,unkLayer) - ... 
            (s21sys_thy-s21sys_exp(counFreq))/s21sys_thy_d; 
        guesses = guesses + 1;                        
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         
Re = -j*sqrt(u0/e0)./(ko*thick_vec(unkLayer).*(permi_vec(:,unkLayer)-1)); 
parameters = [permi_vec(:,unkLayer) Re]; 
DispResults(parameters, freq); 
end 
 
function [A] = A_Matrix_Total(numLayers, unkLayer, kc, ko, permi_vec, ... 
    perme_vec, thick_vec, w, counFreq, option, del_e_r, del_u_r) 
A = eye(2,2); 
switch option 
    case 1 
        for counLay = 1:numLayers+1 
            if counLay == 1 
                A = A*A_Matrix(kc, ko(counFreq), [1 permi_vec(counFreq,counLay)], ... 
                    [1 perme_vec(counFreq,counLay)], thick_vec(counLay), ... 
                    w(counFreq)); 
            elseif counLay == numLayers+1 
                A = A*A_Matrix(kc, ko(counFreq), [permi_vec(counFreq,counLay-1) 1], ... 
                    [perme_vec(counFreq,counLay-1) 1], 0, ... 
                    w(counFreq)); 
            else 
                A = A*A_Matrix(kc, ko(counFreq), ... 
                    [permi_vec(counFreq,counLay-1) permi_vec(counFreq,counLay)], ... 
                    [perme_vec(counFreq,counLay-1) perme_vec(counFreq,counLay)], ... 
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                    thick_vec(counLay), w(counFreq)); 
            end 
        end 
    case 2 
        for counLay = 1:numLayers+1 
            if counLay == 1 && counLay == unkLayer  
                A = A*A_Matrix(kc, ko(counFreq), ... 
                    [1 permi_vec(counFreq,counLay)+del_e_r], ... 
                    [1 perme_vec(counFreq,counLay)+del_u_r], thick_vec(counLay), ... 
                    w(counFreq)); 
            elseif counLay == 1 && counLay ~= unkLayer 
                A = A*A_Matrix(kc, ko(counFreq), ... 
                    [1 permi_vec(counFreq,counLay)], ... 
                    [1 perme_vec(counFreq,counLay)], thick_vec(counLay), ... 
                    w(counFreq)); 
            elseif counLay == numLayers+1 && counLay - 1 == unkLayer   
                A = A*A_Matrix(kc, ko(counFreq), ... 
                    [permi_vec(counFreq,counLay-1)+del_e_r 1], ... 
                    [perme_vec(counFreq,counLay-1)+del_u_r 1], 0, ... 
                    w(counFreq));        
            elseif counLay == numLayers+1 && counLay - 1 ~= unkLayer 
                A = A*A_Matrix(kc, ko(counFreq), ... 
                    [permi_vec(counFreq,counLay-1) 1], ... 
                    [perme_vec(counFreq,counLay-1) 1], 0, ... 
                    w(counFreq));                                
            elseif counLay - 1 == unkLayer 
                A = A*A_Matrix(kc, ko(counFreq), ... 
                    [permi_vec(counFreq,counLay-1)+del_e_r ... 
                        permi_vec(counFreq,counLay)], ... 
                    [perme_vec(counFreq,counLay-1)+del_u_r ... 
                        perme_vec(counFreq,counLay)], ... 
                    thick_vec(counLay), w(counFreq)); 
            elseif counLay == unkLayer 
                A = A*A_Matrix(kc, ko(counFreq), ... 
                    [permi_vec(counFreq,counLay-1) ... 
                        permi_vec(counFreq,counLay)+del_e_r], ... 
                    [perme_vec(counFreq,counLay-1) ... 
                        perme_vec(counFreq,counLay)+del_u_r], ... 
                    thick_vec(counLay), w(counFreq)); 
            else 
                disp('Forgot a case'); 
                return; 
            end 
        end 
    otherwise 
        disp('Improper Choice') 
        return;     
end 
end 
 
function [B] = A_Matrix(kc, ko, e_r, u_r, len, w) 
%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
u0 = 4*pi*10^-7; 
e0 = 8.854e-12; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
gamma1 = sqrt(kc^2 - ko^2*e_r(1)*u_r(1)); 
gamma2 = sqrt(kc^2 - ko^2*e_r(2)*u_r(2)); 
Za = w*u0*u_r(1)/(gamma1/j); 
Zb = w*u0*u_r(2)/(gamma2/j);         
R = (Zb-Za)/(Zb+Za); 
T = 1 + R; 
B = 1/T*[exp(gamma2*len) R*exp(-gamma2*len);R*exp(gamma2*len) exp(-gamma2*len)]; 
end 
 
function DispResults(parameters, freq) 
e_r = parameters(:,1); 
Re = parameters(:,2); 
title_str = 'S_2_1^S^Y^S^,^T^H^Y(\epsilon_r,\omega) - S_2_1^S^Y^S^,^E^X^P(\omega) = 0'; 
figure; 
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subplot(221); 
plot(freq/1e9,real(e_r),'linewidth',2);         
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(223); 
plot(freq/1e9,imag(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(222); 
plot(freq/1e9,real(Re),'linewidth',2);         
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(224); 
plot(freq/1e9,imag(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
end 
 
 

B.2.2 Nth Order Approximation. 

function R = OrderApproxWG(order, thick_vec, backing_rel_permi, a) 
% 
% R = OrderApproxWG(order, thick_vec, backing_rel_permi, a) 
%  
% OrderApproxWG returns the relative permittivity and resistivity of a sample 
%   using an Nth order Maclaurin series approximation 
%   SPECIFICALLY WRITTEN FOR WAVEGUIDE MEASUREMENTS 
%   ASSUMES MEASURED SYSTEM DATA IS NAMED: 
%     s21sample.txt 
%      
% ------------------------------------- 
%       |         |         |      
%       |         |         |      
%       | Unknown | Known   |      
%   Air | Layer   | Layer   | Air  
%       |         |         |      
%       |         |         |      
% -------------------------------------- 
%       |-thick 1-|-thick 2-|       
% 
% order = degree of Maclaurin polynomial retained to formulate 
%   approximation 
% thick_vec = a vector of the thicknesses of the layers in the order shown 
%   in the diagram in METERS 
% backing_rel_permi = relative permittivity of the support backing, or 
%   known layer in the diagram 
% a = longest dimension of the rectangular waveguide in METERS 
 
% close all; 
clc; 
 
%%%%%%%%%%%%%%%%%%%%%%%% Measured Data Filenames %%%%%%%%%%%%%%%%%%%% 
load s21sample.txt; 
freq = s21sample(:,3); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%% S21_exp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21samplea = s21sample(:,1); 
s21sampleb = s21sample(:,2); 
s21samplesys = complex(s21samplea,s21sampleb); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
u0 = 4*pi*10^-7; 
e0 = 8.854e-12; 
N0 = sqrt(u0/e0); 
c = 1/sqrt(e0*u0); 
w = 2*pi*freq; 
ko = w/c;                           
kc = pi/a; 
kz = sqrt(ko.^2-kc^2); 
Z0 = 2*a*freq*N0./sqrt(4*a^2*freq.^2 - c^2); 
t = thick_vec(1); 
l = thick_vec(2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21sys_exp = s21samplesys.*exp(-j*kz*(t+l)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Support Backing %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
e = e0*backing_rel_permi; 
u = u0; 
N = sqrt(u/e); 
Z2 = N./sqrt(1-((1/(2*a*sqrt(e*u)))./freq).^2); 
kz2 = w*sqrt(e*u).*sqrt(1-((1/(2*a*sqrt(e*u)))./freq).^2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Nth Order Approx %%%%%%%%%%%%%%%%%%%%%%%%%%% 
psi1 = exp(j*kz2*l).*(Z2 + Z0); 
psi2 = exp(-j*kz2*l).*(Z0 - Z2); 
omega1 = w*N0.*Z2; 
omega2 = j*w.^2*N0^2/c; 
omega3 = j*c*Z0.*Z2; 
omega4 = w*N0.*Z0; 
omega5 = 4*Z0.*Z2.*w*N0./s21sys_exp; 
tmp_p(:,1) = omega1.*(psi1 + psi2) + t*omega2.*(psi1 - psi2) ... 
    + omega4.*(psi1 - psi2) - omega5;  
if mod(order,2) ~= 0 
    m = floor(order/2) + 1; 
    for i = 1:m 
        if i == m 
            tmp_p(:,i+1) = (-1)^(m-1)*t^(2*m-1)/factorial(2*m-1)*omega3.*(psi1 + psi2); 
        else 
            tmp_p(:,i+1) = (-1)^(i)*t^(2*i)/factorial(2*i)*omega1.*(psi1 + psi2) ... 
                + (-1)^(i)*t^(2*i+1)/factorial(2*i+1)*omega2.*(psi1 - psi2) ... 
                + (-1)^(i-1)*t^(2*i-1)/factorial(2*i-1)*omega3.*(psi1 + psi2) ... 
                + (-1)^(i)*t^(2*i)/factorial(2*i)*omega4.*(psi1 - psi2);                        
        end 
    end 
    tmp_p = fliplr(tmp_p); 
    m = 1; 
    for i = 1:2*length(tmp_p(1,:))-1 
        if mod(i,2) == 0 
            p(:,i) = zeros(length(tmp_p(:,1)),1); 
        else 
            p(:,i) = tmp_p(:,m); 
            m = m + 1; 
        end 
    end 
    for i=1:length(p(:,1)) 
        kz1(i,:) = roots(p(i,:)).'; 
    end 
    for i = 1:length(kz1(1,:)) 
        tmpe_r(:,i) = (kz1(:,i).^2*a^2*c^2/pi^2 + c^2)./(4*a^2*freq.^2); 
    end 
    for i=1:length(tmpe_r(:,1)) 
        for n=1:length(tmpe_r(i,:)) 
            if imag(tmpe_r(i,n)) <= 0 
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                e_r(i,1) = tmpe_r(i,n); 
            end 
        end 
    end             
else 
    m = order/2; 
    for i = 1:m 
        if i == m 
            tmp_p(:,i+1) = (-1)^(m)*t^(2*m)/factorial(2*m)*omega1.*(psi1 + psi2) ... 
                + (-1)^(m-1)*t^(2*m-1)/factorial(2*m-1)*omega3.*(psi1 + psi2) ... 
                + (-1)^(m)*t^(2*m)/factorial(2*m)*omega4.*(psi1 - psi2);            
        else 
            tmp_p(:,i+1) = (-1)^(i)*t^(2*i)/factorial(2*i)*omega1.*(psi1 + psi2) ... 
                + (-1)^(i)*t^(2*i+1)/factorial(2*i+1)*omega2.*(psi1 - psi2) ... 
                + (-1)^(i-1)*t^(2*i-1)/factorial(2*i-1)*omega3.*(psi1 + psi2) ... 
                + (-1)^(i)*t^(2*i)/factorial(2*i)*omega4.*(psi1 - psi2);            
        end 
    end 
    tmp_p = fliplr(tmp_p); 
    m = 1; 
    for i = 1:2*length(tmp_p(1,:))-1 
        if mod(i,2) == 0 
            p(:,i) = zeros(length(tmp_p(:,1)),1); 
        else 
            p(:,i) = tmp_p(:,m); 
            m = m + 1; 
        end 
    end 
    for i=1:length(p(:,1)) 
        kz1(i,:) = roots(p(i,:)).'; 
    end 
    for i = 1:length(kz1(1,:)) 
        tmpe_r(:,i) = (kz1(:,i).^2*a^2*c^2/pi^2 + c^2)./(4*a^2*freq.^2); 
    end 
    for i=1:length(tmpe_r(:,1)) 
        for n=1:length(tmpe_r(i,:)) 
            if imag(tmpe_r(i,n)) <= 0 
                e_r(i,1) = tmpe_r(i,n); 
            end 
        end 
    end             
end     
Re = -j*N0./(ko*t.*(e_r-1)); 
R = [e_r Re]; 
title_str = ['Order ' num2str(order) ' Maclaurin Approximation - Waveguide']; 
figure; 
subplot(221); 
plot(freq/1e9,real(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(223); 
plot(freq/1e9,imag(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(222); 
plot(freq/1e9,real(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(224); 
plot(freq/1e9,imag(Re),'linewidth',2); 
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title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
end 
 
 

B.2.3 Thin Sheet Approximation. 

function R = ResistiveWG(thick_vec, backing_rel_permi, a) 
% 
% R = ResistiveWG(thick_vec, backing_rel_permi, a) 
%  
% ResistiveFS returns the relative permittivity and resistivity of a sample 
%   using resistive boundary conditions  
%   SPECIFICALLY WRITTEN FOR WAVEGUIDE MEASUREMENTS 
%   ASSUMES MEASURED SYSTEM DATA IS NAMED: 
%     s21sample.txt 
%      
% ------------------------------------- 
%       |         |         |      
%       |         |         |      
%       | Unknown | Known   |      
%   Air | Layer   | Layer   | Air  
%       |         |         |      
%       |         |         |      
% -------------------------------------- 
%       |-thick 1-|-thick 2-|       
% 
% thick_vec = a vector of the thicknesses of the layers in the order shown 
%   in the diagram in METERS 
% backing_rel_permi = relative permittivity of the support backing, or 
%   known layer in the diagram 
% a = longest dimension of the rectangular waveguide in METERS 
 
% close all; 
clc; 
 
%%%%%%%%%%%%%%%%%%%%%%%% Measured Data Filenames %%%%%%%%%%%%%%%%%%%% 
load s21sample.txt; 
freq = s21sample(:,3); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% S21_exp %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21samplea = s21sample(:,1); 
s21sampleb = s21sample(:,2); 
s21samplesys = complex(s21samplea,s21sampleb); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
u0 = 4*pi*10^-7; 
e0 = 8.854e-12; 
N0 = sqrt(u0/e0); 
c = 1/sqrt(e0*u0); 
w = 2*pi*freq; 
ko = w/c;                           
kc = pi/a; 
kz = sqrt(ko.^2-kc^2); 
Z0 = 2*a*freq*N0./sqrt(4*a^2*freq.^2 - c^2); 
t = thick_vec(1); 
l = thick_vec(2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Forward %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s21sys_exp = s21samplesys.*exp(-j*kz*l); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Support Backing %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
e = e0*backing_rel_permi; 
u = u0; 
N = sqrt(u/e); 
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Z1 = N./sqrt(1-((1/(2*a*sqrt(e*u)))./freq).^2); 
kz1 = w*sqrt(e*u).*sqrt(1-((1/(2*a*sqrt(e*u)))./freq).^2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% Thin Sheet Approx %%%%%%%%%%%%%%%%%%%%%%%%%% 
psi1 = j*(Z1.^2).*sin(kz1*l) + 2*Z0.*Z1.*cos(kz1*l) + j*(Z0.^2).*sin(kz1*l); 
psi2 = (Z0.^2).*Z1.*cos(kz1*l) + j*Z0.*(Z1.^2).*sin(kz1*l); 
Re = s21sys_exp.*psi2./(2*Z0.*Z1 - s21sys_exp.*psi1); 
e_r = (-j*N0 + Re.*ko*t)./(Re.*ko*t); 
R = [e_r Re]; 
figure; 
subplot(221); 
plot(freq/1e9,real(e_r),'linewidth',2); 
title_str = 'Resistive Boundary Condition - Waveguide'; 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(223); 
plot(freq/1e9,imag(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(222); 
plot(freq/1e9,real(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(224); 
plot(freq/1e9,imag(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
end 
 
 

B.2.4 Vertical Mode Matching Technique. 

function parameters = ModeMatching1DSearchKx(permi_vec, perme_vec, ... 
    thick_vec, len, a, numModes, maxIterations, precision) 
% 
% parameters = ModeMatching1DSearchKx(permi_vec, perme_vec, thick_vec, ... 
%   len, a, numModes, maxIterations, precision) 
% 
% ModeMatching1DSearchKx returns the relative permittivity of a sample 
%   stacked horizontally in a wavegude using S21 
%   S21_thy(w,e) - S21_exp = 0 
%   ASSUMES MEASURED SYSTEM DATA IS NAMED: 
%     s21sample.txt 
%      
%  
% ----------------------------------------------- 
%             |         3         | 
%             |                   | 
%             |-------------------| 
%             |         2         |             ---> z 
%             |-------------------| 
%             |                   | 
%             |         1         | 
% ----------------------------------------------- 
%             |------ length -----| 
% 
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% 1 & 3 are the same known material 
% 2 is the unknown material 
% 
%  
% permi_vec = a vector of the permittivity values of the layers in the 
%   order shown in the diagram 
%   THE VALUE FOR LAYER 2 WILL BE THE INITIAL GUESS 
% perme_vec = a vector of the permeability values of the layers in the 
%   order shown in the diagram 
%   THE VALUE ENTERED FOR LAYER 2 WILL BE ASSUMED TO BE TRUE 
% thick_vec = a vector of the thicknesses of the layers in the order shown 
%   in the diagram in METERS 
% len = length of the sample in METERS 
% a = longest dimension of the rectangular waveguide in METERS 
% numModes = number of modes to calculated 
% maxIterations = maximum number of root search iterations 
% precision = precision of root 
 
 
% close all; 
% clc; 
warning off all; 
 
%%%%% Measured Data Filename  
load s21sample.txt; 
 
freq = s21sample(:,3); 
%%%%% 
%%%%% S21_exp  
s21samplea = s21sample(:,1); 
s21sampleb = s21sample(:,2); 
s21samplesys = complex(s21samplea,s21sampleb); 
%%%%% 
%%%%% Constants 
u0 = 4*pi*10^-7; 
e0 = 8.854e-12; 
c = 1/sqrt(e0*u0); 
 
w = 2*pi*freq; 
kx0 = pi/a*[1:numModes]; 
kx0 = repmat(kx0,length(w),1); 
k0 = w*sqrt(e0*u0); 
k0 = repmat(k0,1,numModes); 
gamma0 = (kx0.^2 - k0.^2).^(1/2); 
%%%%% 
%%%%% S21_exp 
s21sys_exp = s21samplesys.*exp(-gamma0(:,1)*len); 
%%%%% 
 
tau = thick_vec(1); 
d = thick_vec(2); 
initial_guess = permi_vec(1,2); 
permi_vec = repmat(permi_vec,length(w),1); 
for i = 1:length(w) 
    prog_str = ['Processing frequency ' num2str(i) ' of ' ... 
        num2str(length(freq)) ' ...']; 
    disp(prog_str); 
    guesses = 1; 
    if i > 1 
        for k = i-1:-1:1 
            if ~isnan(permi_vec(k,2)) 
                permi_vec(i,2) = permi_vec(k,2); 
                break; 
            elseif k == 1 
                permi_vec(i,2) = initial_guess; 
            else 
            end 
        end 
    end 
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    while guesses < maxIterations 
        inter_param = InterParameters(numModes, a, permi_vec(i,:), 0, ... 
            perme_vec, w(i), tau, d, maxIterations, ... 
            precision, gamma0(i,:)); 
        A_Mat = BuildMatrix(numModes, a, inter_param, len, tau, d); 
        b_Vec = BuildVector(numModes, a, inter_param(5,:));  
        sol = A_Mat\b_Vec; 
        s21sys_thy = sol(3*numModes+1); 
        del_permi = precision*permi_vec(i,2); 
        inter_param = InterParameters(numModes, a, permi_vec(i,:), ... 
            del_permi, perme_vec, w(i), tau, d, maxIterations, ... 
            precision, gamma0(i,:)); 
        A_Mat = BuildMatrix(numModes, a, inter_param, len, tau, d); 
        b_Vec = BuildVector(numModes, a, inter_param(5,:)); 
        sol = A_Mat\b_Vec; 
        s21sys_thy_deriv = (sol(3*numModes+1)-s21sys_thy)/del_permi; 
        if abs((s21sys_thy-s21sys_exp(i))/s21sys_thy_deriv) <= precision 
            break; 
        end 
        permi_vec(i,2) = permi_vec(i,2) - ... 
            (s21sys_thy-s21sys_exp(i))/s21sys_thy_deriv; 
        if isnan(permi_vec(i,2)) 
            break; 
        end 
        guesses = guesses + 1;                
    end 
end 
Re = -j*sqrt(u0/e0)./(k0(:,1)*thick_vec(2).*(permi_vec(:,2)-1)); 
parameters = [permi_vec(:,2) Re]; 
DispResults(parameters, freq, numModes); 
end 
 
function inter_param = InterParameters(numModes, a, permi_vec, ... 
    del_permi, perme_vec, w, tau, d, maxIterations, precision, gamma0) 
u0 = 4*pi*10^-7; 
e0 = 8.854e-12; 
permi_vec(2) = permi_vec(2) + del_permi; 
permi_vec = permi_vec*e0; 
perme_vec = perme_vec*u0; 
gamma = FindGamma(numModes, a, permi_vec, perme_vec, w, ... 
    tau, d, maxIterations, precision); 
kx = (w^2*permi_vec(1)*perme_vec(1) + gamma.^2).^(1/2);  
kxu = (w^2*permi_vec(2)*perme_vec(2) + gamma.^2).^(1/2); 
Y = (-kx*perme_vec(2)./(perme_vec(1)*kxu).*cos(kx*tau).*sin(kxu*d) ... 
    - sin(kx*tau).*cos(kxu*d))./sin(kx*(a-tau-d)); 
Z0 = j*w*u0./gamma0; 
Z = j*w*perme_vec(1)./gamma; 
Zu = j*w*perme_vec(2)./gamma; 
psi1 = kx*perme_vec(2)./(perme_vec(1)*kxu).*cos(kx*tau); 
psi2 = -sin(kx*tau); 
     
inter_param = [gamma; 
               kx; 
               kxu; 
               Y; 
               Z0; 
               Z; 
               Zu; 
               psi1; 
               psi2];         
end 
     
function A = BuildMatrix(numModes, a, inter_param, len, tau, d) 
gamma = inter_param(1,:); 
kx = inter_param(2,:); 
kxu = inter_param(3,:); 
Y = inter_param(4,:); 
Z0 = inter_param(5,:); 
Z = inter_param(6,:); 
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Zu = inter_param(7,:); 
psi1 = inter_param(8,:); 
psi2 = inter_param(9,:); 
 
psi1 = repmat(psi1,numModes,1); 
psi2 = repmat(psi2,numModes,1); 
Y = repmat(Y,numModes,1); 
Z0 = repmat(Z0,numModes,1); 
Z = repmat(Z,numModes,1); 
Zu = repmat(Zu,numModes,1); 
gamma = repmat(gamma,numModes,1); 
 
M = M_SubMatrix(numModes, a); 
N = N_SubMatrix(numModes, a, kx, tau); 
P = P_SubMatrix(numModes, a, kxu, tau, d); 
R = R_SubMatrix(numModes, a, kxu, tau, d); 
Q = Q_SubMatrix(numModes, a, kx, tau, d); 
 
S1 = -N - psi1.*P + psi2.*R + Y.*Q; 
S2 = N./Z + psi1./Zu.*P - psi2./Zu.*R - Y./Z.*Q; 
S3 = -S2; 
 
A = [-M                          -S1                  ... 
     -S1                          zeros(numModes,numModes); 
     -M./Z0                      -S2                  ... 
     -S3                          zeros(numModes,numModes); 
      zeros(numModes,numModes)    S1.*exp(-gamma*len) ... 
      S1.*exp(gamma*len)          M; 
      zeros(numModes,numModes)    S2.*exp(-gamma*len) ... 
      S3.*exp(gamma*len)         -M./Z0]; 
end 
 
function b = BuildVector(numModes, a, Z0) 
Z0 = Z0.'; 
m = M_SubVector(numModes, a); 
b = [ m;  
     -m./Z0; 
      zeros(numModes,1); 
      zeros(numModes,1)]; 
end 
 
function M_Mat = M_SubMatrix(numModes, a) 
M_Mat = zeros(numModes, numModes); 
for m = 1:numModes 
    M_Mat(m,m) = 1/2*a; 
end 
end 
 
function N_Mat = N_SubMatrix(numModes, a, kx, tau) 
for n = 1:numModes 
    for m = 1:numModes 
        N_Mat(n,m) = 1/2*(a/(n*pi-a*kx(m)))*sin(tau*(n*pi/a-kx(m))) ... 
            - 1/2*(a/(n*pi+a*kx(m)))*sin(tau*(n*pi/a+kx(m))); 
    end 
end 
end 
         
function P_Mat = P_SubMatrix(numModes, a, kxu, tau, d) 
for n = 1:numModes 
    for m = 1:numModes 
        P_Mat(n,m) = 1/2*(a/(n*pi-a*kxu(m))) ...  
            *(sin(n*pi/a*(tau+d) - kxu(m)*d) - sin(n*pi/a*tau)) ... 
            - 1/2*(a/(n*pi+a*kxu(m))) ... 
            *(sin(n*pi/a*(tau+d) + kxu(m)*d) - sin(n*pi/a*tau)); 
    end 
end 
end 
 
function R_Mat = R_SubMatrix(numModes, a, kxu, tau, d) 
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for n = 1:numModes 
    for m = 1:numModes 
        R_Mat(n,m) = 1/2*(a/(n*pi-a*kxu(m))) ...  
            *(-cos(n*pi/a*(tau+d) - kxu(m)*d) + cos(n*pi/a*tau)) ... 
            + 1/2*(a/(n*pi+a*kxu(m))) ... 
            *(-cos(n*pi/a*(tau+d) + kxu(m)*d) + cos(n*pi/a*tau)); 
    end 
end 
end 
 
function Q_Mat = Q_SubMatrix(numModes, a, kx, tau, d) 
for n = 1:numModes 
    for m = 1:numModes 
        Q_Mat(n,m) = 1/2*(a/(n*pi-a*kx(m))) ... 
            *sin(n*pi/a*(tau+d)+kx(m)*(a-tau-d)) ... 
            - 1/2*(a/(n*pi+a*kx(m)))*sin(n*pi/a*(tau+d)+kx(m)*(tau+d-a)); 
    end 
end 
end 
         
function M_Vec = M_SubVector(numModes, a) 
M_Vec = zeros(numModes,1); 
M_Vec(1) = 1/2*a; 
end 
 
function gammaM = FindGamma(numModes, a, permi_vec, perme_vec, ... 
    w, tau, d, maxIterations, precision) 
e = permi_vec(1); 
u = perme_vec(1); 
eu = permi_vec(2); 
uu = perme_vec(2); 
 
delta_d = 0.01; 
%%%%% Initial Gamma Guess - Empty 
gamma = (([1:numModes]*pi/a).^2 - w^2*e*u).^(1/2); 
%%%%% 
for m = 1:numModes 
    d_step = delta_d*d; 
    tau_step = tau + d - d_step; 
    while d_step <= d 
        guesses = 1; 
        while guesses < maxIterations 
            eigen_eq = GammaEigenFunction(gamma(m), 0, tau_step, ... 
                d_step, a, e, u, eu, uu, w); 
            del_gamma = precision*gamma(m); 
            eigen_eq_deriv = (GammaEigenFunction(gamma(m), del_gamma, ... 
                tau_step, d_step, a, e, u, eu, uu, w) - eigen_eq)/del_gamma; 
            if abs(eigen_eq/eigen_eq_deriv) <= precision 
                break; 
            end 
            gamma(m) = gamma(m) - eigen_eq/eigen_eq_deriv;                
            guesses = guesses + 1;             
        end   
        d_step = d_step + delta_d*d; 
        tau_step = tau + d - d_step; 
    end 
end 
gammaM = gamma; 
end 
 
function eigFuncValue = GammaEigenFunction(gamma, del_gamma, tau, d, ... 
    a, e, u, eu, uu, w) 
gamma = gamma + del_gamma; 
kx = (w^2*e*u + gamma^2)^(1/2);  
kxu = (w^2*eu*uu + gamma^2)^(1/2); 
eigFuncValue = (exp(j*kxu*d)+exp(-j*kxu*d))* ... 
        (exp(j*kx*(a-d))-exp(-j*kx*(a-d))) ... 
    + uu*kx/(2*u*kxu)*(exp(j*kxu*d)-exp(-j*kxu*d))* ... 
    (exp(j*kx*(a-d))+exp(j*kx*(a-2*tau-d))+ ... 
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        exp(-j*kx*(a-2*tau-d))+exp(-j*kx*(a-d))) ... 
    + u*kxu/(2*uu*kx)*(exp(j*kxu*d)-exp(-j*kxu*d))* ... 
    (exp(j*kx*(a-d))-exp(j*kx*(a-2*tau-d))- ... 
        exp(-j*kx*(a-2*tau-d))+exp(-j*kx*(a-d))); 
end 
 
function DispResults(parameters, freq, numModes) 
e_r = parameters(:,1); 
Re = parameters(:,2); 
title_str = [num2str(numModes) ' Modes']; 
figure; 
subplot(221); 
plot(freq/1e9,real(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(223); 
plot(freq/1e9,imag(e_r),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of \epsilon_r','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(222); 
plot(freq/1e9,real(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Real Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
subplot(224); 
plot(freq/1e9,imag(Re),'linewidth',2); 
title(title_str,'fontsize',12); 
xlabel('Frequency (GHz)','fontsize',12); 
ylabel('Imaginary Part of R_e','fontsize',12,'fontweight','bold'); 
axis tight; 
grid on; 
end 
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